File size: 18,587 Bytes
a476bbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/******************************************************************************
 * Copyright (c) 2023, Tri Dao.
 ******************************************************************************/

#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#include <c10/cuda/CUDAException.h>  // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK

#include <cub/block/block_load.cuh>
#include <cub/block/block_store.cuh>

#include "causal_conv1d.h"
#include "causal_conv1d_common.h"
#include "static_switch.h"

template<int kNThreads_, int kWidth_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
struct Causal_conv1d_fwd_kernel_traits {
    using input_t = input_t_;
    using weight_t = weight_t_;
    static constexpr int kNThreads = kNThreads_;
    static constexpr int kWidth = kWidth_;
    static constexpr int kNBytes = sizeof(input_t);
    static_assert(kNBytes == 2 || kNBytes == 4);
    static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
    static_assert(kWidth <= kNElts);
    static constexpr bool kIsVecLoad = kIsVecLoad_;
    using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
    using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNElts, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
    using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, 1, cub::BLOCK_LOAD_DIRECT>;
    using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNElts, cub::BLOCK_STORE_WARP_TRANSPOSE>;
    using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, 1, cub::BLOCK_STORE_DIRECT>;
    static constexpr int kSmemIOSize = kIsVecLoad
        ? 0
        : std::max({sizeof(typename BlockLoadT::TempStorage), sizeof(typename BlockStoreT::TempStorage)});
    static constexpr int kSmemExchangeSize = kNThreads * kNBytes * kNElts;
    static constexpr int kSmemSize = kSmemIOSize + kSmemExchangeSize;
};

template<typename Ktraits>
__global__ __launch_bounds__(Ktraits::kNThreads)
void causal_conv1d_fwd_kernel(ConvParamsBase params) {
    constexpr int kWidth = Ktraits::kWidth;
    constexpr int kNThreads = Ktraits::kNThreads;
    constexpr int kNElts = Ktraits::kNElts;
    constexpr bool kIsVecLoad = Ktraits::kIsVecLoad;
    using input_t = typename Ktraits::input_t;
    using vec_t = typename Ktraits::vec_t;
    using weight_t = typename Ktraits::weight_t;

    // Shared memory.
    extern __shared__ char smem_[];
    auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
    auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_);
    auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
    auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_);
    vec_t *smem_exchange = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize);

    const int tidx = threadIdx.x;
    const int batch_id = blockIdx.x;
    const int channel_id = blockIdx.y;
    input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
        + channel_id * params.x_c_stride;
    weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride;
    input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
        + channel_id * params.out_c_stride;
    float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]);

    // Thread 0 will load the last elements of the previous chunk, so we initialize those to 0.
    if (tidx == 0) {
        input_t zeros[kNElts] = {0};
        smem_exchange[kNThreads - 1] = reinterpret_cast<vec_t *>(zeros)[0];
    }

    float weight_vals[kWidth];
    #pragma unroll
    for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); }

    constexpr int kChunkSize = kNThreads * kNElts;
    const int n_chunks = (params.seqlen + kChunkSize - 1) / kChunkSize;
    for (int chunk = 0; chunk < n_chunks; ++chunk) {
        input_t x_vals_load[2 * kNElts] = {0};
        if constexpr(kIsVecLoad) {
            Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(x), *reinterpret_cast<vec_t (*)[1]>(&x_vals_load[kNElts]), (params.seqlen - chunk * kChunkSize) / kNElts);
        } else {
            __syncthreads();
            Ktraits::BlockLoadT(smem_load).Load(x, *reinterpret_cast<input_t (*)[kNElts]>(&x_vals_load[kNElts]), params.seqlen - chunk * kChunkSize);
        }
        x += kChunkSize;
        __syncthreads();
        // Thread kNThreads - 1 don't write yet, so that thread 0 can read
        // the last elements of the previous chunk.
        if (tidx < kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
        __syncthreads();
        reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange[tidx > 0 ? tidx - 1 : kNThreads - 1];
        __syncthreads();
        // Now thread kNThreads - 1 can write the last elements of the current chunk.
        if (tidx == kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }

        float x_vals[2 * kNElts];
        #pragma unroll
        for (int i = 0; i < 2 * kNElts; ++i) { x_vals[i] = float(x_vals_load[i]); }

        float out_vals[kNElts];
        #pragma unroll
        for (int i = 0; i < kNElts; ++i) {
            out_vals[i] = bias_val;
            #pragma unroll
            for (int w = 0; w < kWidth; ++w) {
                out_vals[i] += weight_vals[w] * x_vals[kNElts + i - (kWidth - w - 1)];
            }
        }

        if (params.silu_activation) {
            #pragma unroll
            for (int i = 0; i < kNElts; ++i) {
                out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i]));
            }
        }

        input_t out_vals_store[kNElts];
        #pragma unroll
        for (int i = 0; i < kNElts; ++i) { out_vals_store[i] = out_vals[i]; }
        if constexpr(kIsVecLoad) {
            Ktraits::BlockStoreVecT(smem_store_vec).Store(reinterpret_cast<vec_t*>(out), reinterpret_cast<vec_t (&)[1]>(out_vals_store), (params.seqlen - chunk * kChunkSize) / kNElts);
        } else {
            Ktraits::BlockStoreT(smem_store).Store(out, out_vals_store, params.seqlen - chunk * kChunkSize);
        }
        out += kChunkSize;
    }
}

template<int kNThreads, int kWidth, typename input_t, typename weight_t>
void causal_conv1d_fwd_launch(ConvParamsBase &params, cudaStream_t stream) {
    static constexpr int kNElts = sizeof(input_t) == 4 ? 4 : 8;
    BOOL_SWITCH(params.seqlen % kNElts == 0, kIsVecLoad, [&] {
        using Ktraits = Causal_conv1d_fwd_kernel_traits<kNThreads, kWidth, kIsVecLoad, input_t, weight_t>;
        constexpr int kSmemSize = Ktraits::kSmemSize;
        dim3 grid(params.batch, params.dim);
        auto kernel = &causal_conv1d_fwd_kernel<Ktraits>;
        if (kSmemSize >= 48 * 1024) {
            C10_CUDA_CHECK(cudaFuncSetAttribute(
                kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
            }
        kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
        C10_CUDA_KERNEL_LAUNCH_CHECK();
    });
}

template<typename input_t, typename weight_t>
void causal_conv1d_fwd_cuda(ConvParamsBase &params, cudaStream_t stream) {
    if (params.width == 2) {
        causal_conv1d_fwd_launch<128, 2, input_t, weight_t>(params, stream);
    } else if (params.width == 3) {
        causal_conv1d_fwd_launch<128, 3, input_t, weight_t>(params, stream);
    } else if (params.width == 4) {
        causal_conv1d_fwd_launch<128, 4, input_t, weight_t>(params, stream);
    }
}

template<int kNThreads_, int kWidth_, int kChunkSizeL_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
struct Causal_conv1d_channellast_fwd_kernel_traits {
    // The cache line is 128 bytes, and we try to read 16 bytes per thread.
    // So we have 8 threads per "row", so 32 or 64 elements in the channel dimension.
    // That leaves 4 columns per warp, and so 16 columns per block (assuming each block has 128
    // threads). Each each load is 16 x 32|64 elements in the L x C dimensions.
    using input_t = input_t_;
    using weight_t = weight_t_;
    static constexpr int kNThreads = kNThreads_;
    static_assert(kNThreads % 32 == 0);
    static constexpr int kNWarps = kNThreads / 32;
    static constexpr int kWidth = kWidth_;
    static constexpr int kChunkSizeL = kChunkSizeL_;
    static constexpr int kNBytes = sizeof(input_t);
    static_assert(kNBytes == 2 || kNBytes == 4);
    static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
    static constexpr int kNEltsPerRow = 128 / kNBytes;
    static constexpr int kNThreadsPerRow = kNEltsPerRow / kNElts;  // Always 8 for now
    static_assert(kNThreadsPerRow * kNBytes * kNElts == 128);
    static constexpr int kNColsPerWarp = 32 / kNThreadsPerRow;  // Always 4 for now
    static_assert(kNColsPerWarp * kNThreadsPerRow == 32);
    static constexpr int kNColsPerLoad = kNColsPerWarp * kNWarps;
    static constexpr int kNLoads = kChunkSizeL / kNColsPerLoad;
    static_assert(kNLoads * kNColsPerLoad == kChunkSizeL);
    static constexpr bool kIsVecLoad = kIsVecLoad_;
    using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
    // using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
    // using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
    // static constexpr int kSmemSize = std::max({sizeof(typename BlockLoadT::TempStorage),
    //                                            sizeof(typename BlockStoreT::TempStorage)});
    // static constexpr int kSmemSize = kChunkSizeL * kNEltsPerRow * kNBytes;
};

template<typename Ktraits>
__global__ __launch_bounds__(Ktraits::kNThreads)
void causal_conv1d_channellast_fwd_kernel(ConvParamsBase params) {
    constexpr int kWidth = Ktraits::kWidth;
    constexpr int kNThreads = Ktraits::kNThreads;
    constexpr int kNElts = Ktraits::kNElts;
    constexpr int kNWarp = Ktraits::kNWarps;
    constexpr int kNThreadsPerC = Ktraits::kNThreadsPerRow;
    constexpr int kLPerLoad = Ktraits::kNColsPerLoad;
    constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
    constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
    using input_t = typename Ktraits::input_t;
    using vec_t = typename Ktraits::vec_t;
    using weight_t = typename Ktraits::weight_t;

    // Shared memory.
    __shared__ input_t x_smem[kWidth - 1 + kChunkSizeL][kChunkSizeC + kNElts];

    const int tid = threadIdx.x;
    const int l_idx = tid / kNThreadsPerC;
    const int c_idx = tid % kNThreadsPerC;
    const int batch_id = blockIdx.x;
    const int chunk_l_id = blockIdx.y;
    const int chunk_c_id = blockIdx.z;
    input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
        + (chunk_l_id * kChunkSizeL + l_idx) * params.x_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
    weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr)
        + chunk_c_id * kChunkSizeC * params.weight_c_stride;
    input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
        + (chunk_l_id * kChunkSizeL + l_idx) * params.out_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;

    #pragma unroll
    for (int l = 0; l < Ktraits::kNLoads; ++l) {
        input_t x_vals_load[kNElts] = {0};
        if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
            && chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
            reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x + l * kLPerLoad * params.x_l_stride);
        }
        reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + l * kLPerLoad + l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
    }
    // Load the elements from the previous chunk that are needed for convolution.
    if (l_idx < kWidth - 1) {
        input_t x_vals_load[kNElts] = {0};
        if (chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) >= 0
            && chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < params.seqlen
            && chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
            reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x - (kWidth - 1) * params.x_l_stride);
        }
        reinterpret_cast<vec_t *>(x_smem[l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
    }

    __syncthreads();

    constexpr int kLPerThread = std::min(kChunkSizeL * kChunkSizeC / kNThreads, kChunkSizeL);
    static_assert(kLPerThread * kNThreads == kChunkSizeL * kChunkSizeC);
    constexpr int kNThreadsPerRow = kChunkSizeL / kLPerThread;
    static_assert(kNThreadsPerRow * kLPerThread == kChunkSizeL);
    // kChunkSizeL, kLPerThread, kNThreadsPerRow should be powers of 2 for simplicity
    static_assert((kChunkSizeL & (kChunkSizeL - 1)) == 0);
    static_assert((kLPerThread & (kLPerThread - 1)) == 0);
    static_assert((kNThreadsPerRow & (kNThreadsPerRow - 1)) == 0);
    static_assert(kNThreadsPerRow <= 32);

    const int row_idx = tid / kNThreadsPerRow;
    const int col_idx = tid % kNThreadsPerRow;

    float bias_val = params.bias_ptr == nullptr || chunk_c_id * kChunkSizeC + row_idx >= params.dim ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[chunk_c_id * kChunkSizeC + row_idx]);
    float weight_vals[kWidth] = {0};
    if (chunk_c_id + kChunkSizeC + row_idx < params.dim) {
        #pragma unroll
        for (int w = 0; w < kWidth; ++w) {
            weight_vals[w] = weight[row_idx * params.weight_c_stride + w * params.weight_width_stride];
        }
    }
    float x_vals[kWidth - 1 + kLPerThread];
    #pragma unroll
    for (int i = 0; i < kWidth - 1 + kLPerThread; ++i) {
        x_vals[i] = float(x_smem[col_idx * kLPerThread + i][row_idx]);
    }

    float out_vals[kLPerThread];
    #pragma unroll
    for (int i = 0; i < kLPerThread; ++i) {
        out_vals[i] = bias_val;
        #pragma unroll
        for (int w = 0; w < kWidth; ++w) { out_vals[i] += weight_vals[w] * x_vals[i + w]; }
        if (params.silu_activation) {out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i])); }
    }

    // Since kNThreadsPerRow is a power of 2 and <= 32, we only need syncwarp and not syncthreads.
    __syncwarp();
    #pragma unroll
    for (int i = 0; i < kLPerThread; ++i) { x_smem[col_idx * kLPerThread + i][row_idx] = out_vals[i]; }
    __syncthreads();

    #pragma unroll
    for (int l = 0; l < Ktraits::kNLoads; ++l) {
        input_t out_vals_store[kNElts];
        reinterpret_cast<vec_t *>(out_vals_store)[0] = reinterpret_cast<vec_t *>(x_smem[l * kLPerLoad + l_idx])[c_idx];
        if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
            && chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
            *reinterpret_cast<vec_t *>(out + l * kLPerLoad * params.out_l_stride) = reinterpret_cast<vec_t *>(out_vals_store)[0];
        }
    }

}

template<int kNThreads, int kWidth, typename input_t, typename weight_t>
void causal_conv1d_channellast_fwd_launch(ConvParamsBase &params, cudaStream_t stream) {
    using Ktraits = Causal_conv1d_channellast_fwd_kernel_traits<kNThreads, kWidth, 64, true, input_t, weight_t>;
    // constexpr int kSmemSize = Ktraits::kSmemSize;
    constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
    constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
    const int n_chunks_L = (params.seqlen + kChunkSizeL - 1) / kChunkSizeL;
    const int n_chunks_C = (params.dim + kChunkSizeC - 1) / kChunkSizeC;
    // printf("n_chunks_L: %d, n_chunks_C: %d\n", n_chunks_L, n_chunks_C);
    dim3 grid(params.batch, n_chunks_L, n_chunks_C);
    dim3 block(Ktraits::kNThreads);
    auto kernel = &causal_conv1d_channellast_fwd_kernel<Ktraits>;
    // if (kSmemSize >= 48 * 1024) {
    //     C10_CUDA_CHECK(cudaFuncSetAttribute(
    //         kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
    //     }
    // kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
    kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
    C10_CUDA_KERNEL_LAUNCH_CHECK();
}

template<typename input_t, typename weight_t>
void causal_conv1d_channellast_fwd_cuda(ConvParamsBase &params, cudaStream_t stream) {
    if (params.width == 2) {
        causal_conv1d_channellast_fwd_launch<128, 2, input_t, weight_t>(params, stream);
    } else if (params.width == 3) {
        causal_conv1d_channellast_fwd_launch<128, 3, input_t, weight_t>(params, stream);
    } else if (params.width == 4) {
        causal_conv1d_channellast_fwd_launch<128, 4, input_t, weight_t>(params, stream);
    }
}

template void causal_conv1d_fwd_cuda<float, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::Half, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::BFloat16, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<float, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::Half, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::BFloat16, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<float, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::Half, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);

template void causal_conv1d_channellast_fwd_cuda<float, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<at::Half, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<float, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<at::Half, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<float, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<at::Half, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);