Fill-Mask
Transformers
PyTorch
esm
Inference Endpoints
File size: 2,213 Bytes
1e6a1f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# config.py
from fuson_plm.utils.logging import CustomParams

CLEAN = CustomParams(
    ### Changing these parameters is not recommended
    FODB_PATH = '../data/raw_data/FOdb_all.csv',                    # path to raw FOdb database
    FODB_PUNCTA_PATH = '../data/raw_data/FOdb_puncta.csv',          # path to raw FOdb puncta experimental data
    FUSIONPDB_PATH = '../data/raw_data/FusionPDB.txt',              # path to raw FusionPDB Level 1 .txt download
)

# Clustering Parameters
CLUSTER = CustomParams(
    MAX_SEQ_LENGTH = 2000,                                          # INCLUSIVE max length (amino acids) of a sequence for training, validation, or testing 
    
    # MMSeqs2 parameters: see GitHub or MMSeqs2 Wiki for guidance
    MIN_SEQ_ID = 0.3,                                               # % identity
    C = 0.8,                                                        # % sequence length overlap
    COV_MODE = 0,                                                  # cov-mode: 0 = bidirectional, 1 = target coverage, 2 = query coverage, 3 = target-in-query length coverage.
    # File paths
    INPUT_PATH = '../data/fuson_db.csv',
    PATH_TO_MMSEQS = '../mmseqs'                                    # path to where you installed MMSeqs2
)

# Splitting Parameters
# We randomly split clusters in two rounds to arrive at a Train, Validation, and Test set. 
# Round 1) All clusters -> Train (final) and Other (temp). Round 2) Other (temp) clusters -> Val (final) and Test (final)
SPLIT = CustomParams(
    FUSON_DB_PATH = '../data/fuson_db.csv',
    CLUSTER_OUTPUT_PATH = '../data/clustering/mmseqs_full_results.csv',   
    RANDOM_STATE_1 = 2,                                    # random_state_1 = state for splitting all data into train & other
    TEST_SIZE_1 = 0.18,                                    # test size for data -> train/test split. e.g. 20 means 80% clusters in train, 20% clusters in other
    RANDOM_STATE_2 = 6,                                    # random_state_2 = state for splitting other from ^ into val and test
    TEST_SIZE_2 = 0.44                                     # test size for train -> train/val split. e.g. 0.50 means 50% clusters in train, 50% clusters in test
)