File size: 12,135 Bytes
ffaff91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import pandas as pd
from sklearn.model_selection import train_test_split
from fuson_plm.utils.logging import log_update
def split_clusters_train_test(X, y, benchmark_cluster_reps=[], random_state = 1, test_size = 0.20):
# cluster with random state fixed for reproducible results
log_update(f"\tPerforming split: all clusters -> train clusters ({round(1-test_size,3)}) and test clusters ({test_size})")
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state)
# add benchmark representatives back to X_test
log_update(f"\tManually adding {len(benchmark_cluster_reps)} clusters containing benchmark seqs into X_test")
X_test += benchmark_cluster_reps
# assert no duplicates within the train, test, or val sets (there shouldn't be, if the input data was clean)
assert len(X_train)==len(set(X_train))
assert len(X_test)==len(set(X_test))
return {
'X_train': X_train,
'X_test': X_test
}
def split_clusters_train_val_test(X, y, benchmark_cluster_reps=[], random_state_1 = 1, random_state_2 = 1, test_size_1 = 0.20, test_size_2 = 0.50):
# cluster with random state fixed for reproducible results
log_update(f"\tPerforming first split: all clusters -> train clusters ({round(1-test_size_1,3)}) and other ({test_size_1})")
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size_1, random_state=random_state_1)
log_update(f"\tPerforming second split: other -> val clusters ({round(1-test_size_2,3)}) and test clusters ({test_size_2})")
X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, test_size=test_size_2, random_state=random_state_2)
# add benchmark representatives back to X_test
log_update(f"\tManually adding {len(benchmark_cluster_reps)} clusters containing benchmark seqs into X_test")
X_test += benchmark_cluster_reps
# assert no duplicates within the train, test, or val sets (there shouldn't be, if the input data was clean)
assert len(X_train)==len(set(X_train))
assert len(X_val)==len(set(X_val))
assert len(X_test)==len(set(X_test))
return {
'X_train': X_train,
'X_val': X_val,
'X_test': X_test
}
def split_clusters(cluster_representatives: list, val_set = True, benchmark_cluster_reps=[], random_state_1 = 1, random_state_2 = 1, test_size_1 = 0.20, test_size_2 = 0.50):
""""
Cluster-splitting method amenable to either train-test or train-val-test.
For train-val-test, there are two splits.
"""
log_update("\nPerforming splits...")
# Approx. 80/10/10 split
X = [x for x in cluster_representatives if not(x in benchmark_cluster_reps)] # X, for splitting, does NOT include benchmark reps. We'll add these clusters to test.
y = [0]*len(X) # y is a dummy array here; there are no values.
split_dict = None
if val_set:
split_dict = split_clusters_train_val_test(X, y, benchmark_cluster_reps=benchmark_cluster_reps,
random_state_1 = random_state_1, random_state_2 = random_state_2,
test_size_1 = test_size_1, test_size_2 = test_size_2)
else:
split_dict = split_clusters_train_test(X, y, benchmark_cluster_reps=benchmark_cluster_reps,
random_state = random_state_1,
test_size = test_size_1)
return split_dict
def check_split_validity(train_clusters, val_clusters, test_clusters, benchmark_sequences=None):
"""
Args:
train_clusters (pd.DataFrame):
val_clusters (pd.DataFrame): (optional - can pass None if there is no validation set)
test_clusters (pd.DataFrame):
"""
# Make grouped versions of these DataFrames for size analysis
train_clustersgb = train_clusters.groupby('representative seq_id')['member seq_id'].count().reset_index().rename(columns={'member seq_id':'member count'})
if val_clusters is not None:
val_clustersgb = val_clusters.groupby('representative seq_id')['member seq_id'].count().reset_index().rename(columns={'member seq_id':'member count'})
if test_clusters is not None:
test_clustersgb = test_clusters.groupby('representative seq_id')['member seq_id'].count().reset_index().rename(columns={'member seq_id':'member count'})
# Calculate stats - clusters
n_train_clusters = len(train_clustersgb)
n_val_clusters, n_test_clusters = 0, 0
if val_clusters is not None:
n_val_clusters = len(val_clustersgb)
if test_clusters is not None:
n_test_clusters = len(test_clustersgb)
n_clusters = n_train_clusters + n_val_clusters + n_test_clusters
assert len(train_clusters['representative seq_id'].unique()) == len(train_clustersgb)
if val_clusters is not None:
assert len(val_clusters['representative seq_id'].unique()) == len(val_clustersgb)
if test_clusters is not None:
assert len(test_clusters['representative seq_id'].unique()) == len(test_clustersgb)
train_cluster_pcnt = round(100*n_train_clusters/n_clusters,2)
if val_clusters is not None:
val_cluster_pcnt = round(100*n_val_clusters/n_clusters,2)
if test_clusters is not None:
test_cluster_pcnt = round(100*n_test_clusters/n_clusters,2)
# Calculate stats - proteins
n_train_proteins = len(train_clusters)
n_val_proteins, n_test_proteins = 0, 0
if val_clusters is not None:
n_val_proteins = len(val_clusters)
if test_clusters is not None:
n_test_proteins = len(test_clusters)
n_proteins = n_train_proteins + n_val_proteins + n_test_proteins
assert len(train_clusters) == sum(train_clustersgb['member count'])
if val_clusters is not None:
assert len(val_clusters) == sum(val_clustersgb['member count'])
if test_clusters is not None:
assert len(test_clusters) == sum(test_clustersgb['member count'])
train_protein_pcnt = round(100*n_train_proteins/n_proteins,2)
if val_clusters is not None:
val_protein_pcnt = round(100*n_val_proteins/n_proteins,2)
if test_clusters is not None:
test_protein_pcnt = round(100*n_test_proteins/n_proteins,2)
# Print results
log_update("\nCluster breakdown...")
log_update(f"Total clusters = {n_clusters}, total proteins = {n_proteins}")
log_update(f"\tTrain set:\n\t\tTotal Clusters = {len(train_clustersgb)} ({train_cluster_pcnt}%)\n\t\tTotal Proteins = {len(train_clusters)} ({train_protein_pcnt}%)")
if val_clusters is not None:
log_update(f"\tVal set:\n\t\tTotal Clusters = {len(val_clustersgb)} ({val_cluster_pcnt}%)\n\t\tTotal Proteins = {len(val_clusters)} ({val_protein_pcnt}%)")
if test_clusters is not None:
log_update(f"\tTest set:\n\t\tTotal Clusters = {len(test_clustersgb)} ({test_cluster_pcnt}%)\n\t\tTotal Proteins = {len(test_clusters)} ({test_protein_pcnt}%)")
# Check for overlap in both sequence ID and sequence actual
train_protein_ids = set(train_clusters['member seq_id'])
train_protein_seqs = set(train_clusters['member seq'])
if val_clusters is not None:
val_protein_ids = set(val_clusters['member seq_id'])
val_protein_seqs = set(val_clusters['member seq'])
if test_clusters is not None:
test_protein_ids = set(test_clusters['member seq_id'])
test_protein_seqs = set(test_clusters['member seq'])
# Print results
log_update("\nChecking for overlap...")
if (val_clusters is not None) and (test_clusters is not None):
log_update(f"\tSequence IDs...\n\t\tTrain-Val Overlap: {len(train_protein_ids.intersection(val_protein_ids))}\n\t\tTrain-Test Overlap: {len(train_protein_ids.intersection(test_protein_ids))}\n\t\tVal-Test Overlap: {len(val_protein_ids.intersection(test_protein_ids))}")
log_update(f"\tSequences...\n\t\tTrain-Val Overlap: {len(train_protein_seqs.intersection(val_protein_seqs))}\n\t\tTrain-Test Overlap: {len(train_protein_seqs.intersection(test_protein_seqs))}\n\t\tVal-Test Overlap: {len(val_protein_seqs.intersection(test_protein_seqs))}")
if (val_clusters is not None) and (test_clusters is None):
log_update(f"\tSequence IDs...\n\t\tTrain-Val Overlap: {len(train_protein_ids.intersection(val_protein_ids))}")
log_update(f"\tSequences...\n\t\tTrain-Val Overlap: {len(train_protein_seqs.intersection(val_protein_seqs))}")
if (val_clusters is None) and (test_clusters is not None):
log_update(f"\tSequence IDs...\n\t\tTrain-Test Overlap: {len(train_protein_ids.intersection(test_protein_ids))}")
log_update(f"\tSequences...\n\t\tTrain-Test Overlap: {len(train_protein_seqs.intersection(test_protein_seqs))}")
# Assert no sequence overlap
if val_clusters is not None:
assert len(train_protein_seqs.intersection(val_protein_seqs))==0
if test_clusters is not None:
assert len(train_protein_seqs.intersection(test_protein_seqs))==0
if (val_clusters is not None) and (test_clusters is not None):
assert len(val_protein_seqs.intersection(test_protein_seqs))==0
# Finally, check that there are only benchmark sequences in test - if there are benchmark sequences
if not(benchmark_sequences is None):
bench_in_train = len(train_clusters.loc[train_clusters['member seq'].isin(benchmark_sequences)]['member seq'].unique())
bench_in_val, bench_in_test = 0, 0
if val_clusters is not None:
bench_in_val = len(val_clusters.loc[val_clusters['member seq'].isin(benchmark_sequences)]['member seq'].unique())
if test_clusters is not None:
bench_in_test = len(test_clusters.loc[test_clusters['member seq'].isin(benchmark_sequences)]['member seq'].unique())
# Assert this
log_update("\nChecking for benchmark sequence presence in test, and absence from train and val...")
log_update(f"\tTotal benchmark sequences: {len(benchmark_sequences)}")
log_update(f"\tBenchmark sequences in train: {bench_in_train}")
if val_clusters is not None:
log_update(f"\tBenchmark sequences in val: {bench_in_val}")
if test_clusters is not None:
log_update(f"\tBenchmark sequences in test: {bench_in_test}")
assert bench_in_train == bench_in_val == 0
assert bench_in_test == len(benchmark_sequences)
def check_class_distributions(train_df, val_df, test_df, class_col='class'):
"""
Checks class distributions within train, val, and test sets.
Expects input dataframes to have 'sequence' column and 'class' column
"""
train_vc = pd.DataFrame(train_df[class_col].value_counts()).reset_index().rename(columns={'index':class_col, class_col:'train_count'})
train_vc['train_pct'] = (train_vc['train_count'] / train_vc['train_count'].sum()).round(3)*100
if val_df is not None:
val_vc = pd.DataFrame(val_df[class_col].value_counts()).reset_index().rename(columns={'index':class_col, class_col:'val_count'})
val_vc['val_pct'] = (val_vc['val_count'] / val_vc['val_count'].sum()).round(3)*100
test_vc = pd.DataFrame(test_df[class_col].value_counts()).reset_index().rename(columns={'index':class_col, class_col:'test_count'})
test_vc['test_pct'] = (test_vc['test_count'] / test_vc['test_count'].sum()).round(3)*100
# concatenate so I can see them next to each other
if val_df is not None:
compare = pd.concat([train_vc, val_vc, test_vc], axis=1)
compare['train-val diff'] = (compare['train_pct'] - compare['val_pct']).apply(lambda x: abs(x))
compare['val-test diff'] = (compare['val_pct'] - compare['test_pct']).apply(lambda x: abs(x))
else:
compare = pd.concat([train_vc, test_vc], axis=1)
compare['train-test diff'] = (compare['train_pct'] - compare['test_pct']).apply(lambda x: abs(x))
compare_str = compare.to_string(index=False)
compare_str = "\t" + compare_str.replace("\n","\n\t")
log_update(f"\nClass distribution:\n{compare_str}") |