Chat-Error commited on
Commit
c2f3a04
·
verified ·
1 Parent(s): 2197429

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/Untitled-checkpoint.ipynb ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [],
3
+ "metadata": {},
4
+ "nbformat": 4,
5
+ "nbformat_minor": 5
6
+ }
README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Chat-Error/Mistral-Kimiko-CSFT
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
Untitled.ipynb ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 2,
6
+ "id": "6cde784e-3949-4eb5-925e-9009da201ebd",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "from huggingface_hub import HfApi\n",
11
+ "\n",
12
+ "api = HfApi()\n",
13
+ "\n",
14
+ "# Upload all the content from the local folder to your remote Space.\n",
15
+ "# By default, files are uploaded at the root of the repo\n",
16
+ "def upload():\n",
17
+ " api.upload_folder(\n",
18
+ " \n",
19
+ " folder_path=\"/workspace/axolotl/qlora-out\",\n",
20
+ " \n",
21
+ " repo_id=\"Chat-Error/Claude-Kimiko\",\n",
22
+ " \n",
23
+ " repo_type=\"model\",\n",
24
+ " \n",
25
+ " )"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": null,
31
+ "id": "e125b798-01f6-43d3-894a-fb0147059085",
32
+ "metadata": {},
33
+ "outputs": [],
34
+ "source": []
35
+ }
36
+ ],
37
+ "metadata": {
38
+ "kernelspec": {
39
+ "display_name": "Python 3 (ipykernel)",
40
+ "language": "python",
41
+ "name": "python3"
42
+ },
43
+ "language_info": {
44
+ "codemirror_mode": {
45
+ "name": "ipython",
46
+ "version": 3
47
+ },
48
+ "file_extension": ".py",
49
+ "mimetype": "text/x-python",
50
+ "name": "python",
51
+ "nbconvert_exporter": "python",
52
+ "pygments_lexer": "ipython3",
53
+ "version": "3.10.13"
54
+ }
55
+ },
56
+ "nbformat": 4,
57
+ "nbformat_minor": 5
58
+ }
adapter_config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "alpha_pattern": {},
3
  "auto_mapping": null,
4
- "base_model_name_or_path": "Chat-Error/IWasDointCrystalMethOnTheKitchenButThenMomWalkedIn-NeuralHermesStripedCapybara-Mistral-11B-SLERP",
5
  "bias": "none",
6
  "fan_in_fan_out": null,
7
  "inference_mode": false,
@@ -10,7 +10,7 @@
10
  "layers_to_transform": null,
11
  "loftq_config": {},
12
  "lora_alpha": 64,
13
- "lora_dropout": 0.05,
14
  "megatron_config": null,
15
  "megatron_core": "megatron.core",
16
  "modules_to_save": null,
@@ -20,10 +20,10 @@
20
  "revision": null,
21
  "target_modules": [
22
  "up_proj",
23
- "gate_proj",
24
- "k_proj",
25
  "q_proj",
26
  "v_proj",
 
 
27
  "o_proj",
28
  "down_proj"
29
  ],
 
1
  {
2
  "alpha_pattern": {},
3
  "auto_mapping": null,
4
+ "base_model_name_or_path": "Chat-Error/Mistral-Kimiko-CSFT",
5
  "bias": "none",
6
  "fan_in_fan_out": null,
7
  "inference_mode": false,
 
10
  "layers_to_transform": null,
11
  "loftq_config": {},
12
  "lora_alpha": 64,
13
+ "lora_dropout": 0.0,
14
  "megatron_config": null,
15
  "megatron_core": "megatron.core",
16
  "modules_to_save": null,
 
20
  "revision": null,
21
  "target_modules": [
22
  "up_proj",
 
 
23
  "q_proj",
24
  "v_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
  "o_proj",
28
  "down_proj"
29
  ],
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2e2127f72e5d9fae314e092e828185d63396d7a76ecf8f468ab746ed7c60990
3
+ size 335706186
checkpoint-1488/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Chat-Error/Mistral-Kimiko-CSFT
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
checkpoint-1488/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Chat-Error/Mistral-Kimiko-CSFT",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 64,
13
+ "lora_dropout": 0.0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "up_proj",
23
+ "q_proj",
24
+ "v_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "o_proj",
28
+ "down_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
checkpoint-1488/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df2a2f84496bb47a50f895a1d1647c8fedbaa3f83a2f3992e5776f64601d095b
3
+ size 335604696
checkpoint-1488/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f4e52830095c066f3209956679e0810fcc648f287de5fe7b9a73372627ead10
3
+ size 168625172
checkpoint-1488/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3e5d946241df2516b06d7074d8779088eae7607173ad780df56583910a9589b
3
+ size 14244
checkpoint-1488/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e15f7d9560f5fd87dfc12320a528f806c640656f865ca08c9dc5788eef9631a
3
+ size 1064
checkpoint-1488/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1488/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8358787deffea50a57e590c449c424422609cef40af4a0de5a5b2512c3bc98e
3
+ size 5304
checkpoint-1984/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Chat-Error/Mistral-Kimiko-CSFT
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
checkpoint-1984/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Chat-Error/Mistral-Kimiko-CSFT",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 64,
13
+ "lora_dropout": 0.0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "up_proj",
23
+ "q_proj",
24
+ "v_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "o_proj",
28
+ "down_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
checkpoint-1984/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67ea9f328055d8f5f80ba2ed1e96c97d251ef25e9982dc350f79d20acc2a11ac
3
+ size 335604696
checkpoint-1984/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18f6c5d65397b5d2d3340eb0ee236f258b58d123b516d0f645f0b5d9fdd75c94
3
+ size 168625172
checkpoint-1984/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d3b7102895eb0637b0cab516bd672f216b2bf79078a83eb301011a90444f44c
3
+ size 14244
checkpoint-1984/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:160dd51274d70b1c5165e721d0b137039fee2c3504ba87637895635fbc710971
3
+ size 1064
checkpoint-1984/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1984/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8358787deffea50a57e590c449c424422609cef40af4a0de5a5b2512c3bc98e
3
+ size 5304
checkpoint-496/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Chat-Error/Mistral-Kimiko-CSFT
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
checkpoint-496/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Chat-Error/Mistral-Kimiko-CSFT",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 64,
13
+ "lora_dropout": 0.0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "up_proj",
23
+ "q_proj",
24
+ "v_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "o_proj",
28
+ "down_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
checkpoint-496/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61a8a8dc18214e72466cd9166a6872ea4d0f3b266a78aa831cac2cabdfd09555
3
+ size 335604696
checkpoint-496/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c572160284c19840045d2ff7937bcd6e45cedcdfa9e54f96714ef3bb0f77f402
3
+ size 168625172
checkpoint-496/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9899ccda7f0d8d9511991180b93aab508ce6e8489de708c88ad1188e7e1d90d6
3
+ size 14244
checkpoint-496/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a802d8544e410ceb6c8c895daa2323a6fe5d9ac7469d1e1c7b73920560abe1e0
3
+ size 1064
checkpoint-496/trainer_state.json ADDED
@@ -0,0 +1,3021 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.436846375465393,
3
+ "best_model_checkpoint": "./qlora-out/checkpoint-496",
4
+ "epoch": 0.25012607160867373,
5
+ "eval_steps": 248,
6
+ "global_step": 496,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 2.0000000000000003e-06,
14
+ "loss": 1.3547,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "eval_loss": 1.5788122415542603,
20
+ "eval_runtime": 99.5564,
21
+ "eval_samples_per_second": 1.165,
22
+ "eval_steps_per_second": 1.165,
23
+ "step": 1
24
+ },
25
+ {
26
+ "epoch": 0.0,
27
+ "learning_rate": 4.000000000000001e-06,
28
+ "loss": 1.5678,
29
+ "step": 2
30
+ },
31
+ {
32
+ "epoch": 0.0,
33
+ "learning_rate": 6e-06,
34
+ "loss": 1.8406,
35
+ "step": 3
36
+ },
37
+ {
38
+ "epoch": 0.0,
39
+ "learning_rate": 8.000000000000001e-06,
40
+ "loss": 2.2337,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.0,
45
+ "learning_rate": 1e-05,
46
+ "loss": 1.6725,
47
+ "step": 5
48
+ },
49
+ {
50
+ "epoch": 0.0,
51
+ "learning_rate": 1.2e-05,
52
+ "loss": 1.4016,
53
+ "step": 6
54
+ },
55
+ {
56
+ "epoch": 0.0,
57
+ "learning_rate": 1.4e-05,
58
+ "loss": 1.3171,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.0,
63
+ "learning_rate": 1.6000000000000003e-05,
64
+ "loss": 1.4367,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0,
69
+ "learning_rate": 1.8e-05,
70
+ "loss": 1.4082,
71
+ "step": 9
72
+ },
73
+ {
74
+ "epoch": 0.01,
75
+ "learning_rate": 2e-05,
76
+ "loss": 1.5169,
77
+ "step": 10
78
+ },
79
+ {
80
+ "epoch": 0.01,
81
+ "learning_rate": 1.9999996846759028e-05,
82
+ "loss": 1.6735,
83
+ "step": 11
84
+ },
85
+ {
86
+ "epoch": 0.01,
87
+ "learning_rate": 1.99999873870381e-05,
88
+ "loss": 1.3341,
89
+ "step": 12
90
+ },
91
+ {
92
+ "epoch": 0.01,
93
+ "learning_rate": 1.9999971620843182e-05,
94
+ "loss": 1.7104,
95
+ "step": 13
96
+ },
97
+ {
98
+ "epoch": 0.01,
99
+ "learning_rate": 1.9999949548184215e-05,
100
+ "loss": 1.2838,
101
+ "step": 14
102
+ },
103
+ {
104
+ "epoch": 0.01,
105
+ "learning_rate": 1.9999921169075117e-05,
106
+ "loss": 1.4659,
107
+ "step": 15
108
+ },
109
+ {
110
+ "epoch": 0.01,
111
+ "learning_rate": 1.9999886483533792e-05,
112
+ "loss": 1.504,
113
+ "step": 16
114
+ },
115
+ {
116
+ "epoch": 0.01,
117
+ "learning_rate": 1.999984549158211e-05,
118
+ "loss": 1.7891,
119
+ "step": 17
120
+ },
121
+ {
122
+ "epoch": 0.01,
123
+ "learning_rate": 1.9999798193245924e-05,
124
+ "loss": 1.7854,
125
+ "step": 18
126
+ },
127
+ {
128
+ "epoch": 0.01,
129
+ "learning_rate": 1.9999744588555065e-05,
130
+ "loss": 1.7957,
131
+ "step": 19
132
+ },
133
+ {
134
+ "epoch": 0.01,
135
+ "learning_rate": 1.9999684677543332e-05,
136
+ "loss": 1.5033,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.01,
141
+ "learning_rate": 1.9999618460248515e-05,
142
+ "loss": 1.5491,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.01,
147
+ "learning_rate": 1.9999545936712364e-05,
148
+ "loss": 1.5846,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.01,
153
+ "learning_rate": 1.9999467106980627e-05,
154
+ "loss": 1.6081,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.01,
159
+ "learning_rate": 1.9999381971103015e-05,
160
+ "loss": 1.0283,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.01,
165
+ "learning_rate": 1.9999290529133215e-05,
166
+ "loss": 2.0389,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.01,
171
+ "learning_rate": 1.9999192781128893e-05,
172
+ "loss": 1.3088,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.01,
177
+ "learning_rate": 1.99990887271517e-05,
178
+ "loss": 1.6174,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.01,
183
+ "learning_rate": 1.9998978367267258e-05,
184
+ "loss": 1.4197,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.01,
189
+ "learning_rate": 1.9998861701545155e-05,
190
+ "loss": 1.2337,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.02,
195
+ "learning_rate": 1.9998738730058974e-05,
196
+ "loss": 1.3482,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.02,
201
+ "learning_rate": 1.999860945288627e-05,
202
+ "loss": 1.6648,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.02,
207
+ "learning_rate": 1.9998473870108565e-05,
208
+ "loss": 1.4751,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.02,
213
+ "learning_rate": 1.999833198181137e-05,
214
+ "loss": 2.0115,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.02,
219
+ "learning_rate": 1.9998183788084155e-05,
220
+ "loss": 1.1591,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.02,
225
+ "learning_rate": 1.9998029289020388e-05,
226
+ "loss": 1.4557,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.02,
231
+ "learning_rate": 1.9997868484717504e-05,
232
+ "loss": 1.8469,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.02,
237
+ "learning_rate": 1.999770137527691e-05,
238
+ "loss": 1.7395,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.02,
243
+ "learning_rate": 1.9997527960803994e-05,
244
+ "loss": 1.1644,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.02,
249
+ "learning_rate": 1.999734824140812e-05,
250
+ "loss": 1.3629,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.02,
255
+ "learning_rate": 1.999716221720263e-05,
256
+ "loss": 1.1913,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.02,
261
+ "learning_rate": 1.9996969888304835e-05,
262
+ "loss": 1.9801,
263
+ "step": 41
264
+ },
265
+ {
266
+ "epoch": 0.02,
267
+ "learning_rate": 1.999677125483603e-05,
268
+ "loss": 1.1722,
269
+ "step": 42
270
+ },
271
+ {
272
+ "epoch": 0.02,
273
+ "learning_rate": 1.9996566316921485e-05,
274
+ "loss": 1.4999,
275
+ "step": 43
276
+ },
277
+ {
278
+ "epoch": 0.02,
279
+ "learning_rate": 1.9996355074690438e-05,
280
+ "loss": 1.5593,
281
+ "step": 44
282
+ },
283
+ {
284
+ "epoch": 0.02,
285
+ "learning_rate": 1.999613752827611e-05,
286
+ "loss": 1.7799,
287
+ "step": 45
288
+ },
289
+ {
290
+ "epoch": 0.02,
291
+ "learning_rate": 1.9995913677815705e-05,
292
+ "loss": 1.3714,
293
+ "step": 46
294
+ },
295
+ {
296
+ "epoch": 0.02,
297
+ "learning_rate": 1.9995683523450382e-05,
298
+ "loss": 1.428,
299
+ "step": 47
300
+ },
301
+ {
302
+ "epoch": 0.02,
303
+ "learning_rate": 1.9995447065325292e-05,
304
+ "loss": 1.4206,
305
+ "step": 48
306
+ },
307
+ {
308
+ "epoch": 0.02,
309
+ "learning_rate": 1.9995204303589557e-05,
310
+ "loss": 1.6583,
311
+ "step": 49
312
+ },
313
+ {
314
+ "epoch": 0.03,
315
+ "learning_rate": 1.9994955238396276e-05,
316
+ "loss": 1.4349,
317
+ "step": 50
318
+ },
319
+ {
320
+ "epoch": 0.03,
321
+ "learning_rate": 1.9994699869902516e-05,
322
+ "loss": 1.1203,
323
+ "step": 51
324
+ },
325
+ {
326
+ "epoch": 0.03,
327
+ "learning_rate": 1.999443819826933e-05,
328
+ "loss": 1.2595,
329
+ "step": 52
330
+ },
331
+ {
332
+ "epoch": 0.03,
333
+ "learning_rate": 1.999417022366174e-05,
334
+ "loss": 1.7085,
335
+ "step": 53
336
+ },
337
+ {
338
+ "epoch": 0.03,
339
+ "learning_rate": 1.9993895946248744e-05,
340
+ "loss": 1.4112,
341
+ "step": 54
342
+ },
343
+ {
344
+ "epoch": 0.03,
345
+ "learning_rate": 1.9993615366203313e-05,
346
+ "loss": 1.1461,
347
+ "step": 55
348
+ },
349
+ {
350
+ "epoch": 0.03,
351
+ "learning_rate": 1.9993328483702393e-05,
352
+ "loss": 1.3644,
353
+ "step": 56
354
+ },
355
+ {
356
+ "epoch": 0.03,
357
+ "learning_rate": 1.999303529892691e-05,
358
+ "loss": 1.2273,
359
+ "step": 57
360
+ },
361
+ {
362
+ "epoch": 0.03,
363
+ "learning_rate": 1.9992735812061757e-05,
364
+ "loss": 1.2104,
365
+ "step": 58
366
+ },
367
+ {
368
+ "epoch": 0.03,
369
+ "learning_rate": 1.999243002329581e-05,
370
+ "loss": 1.6421,
371
+ "step": 59
372
+ },
373
+ {
374
+ "epoch": 0.03,
375
+ "learning_rate": 1.9992117932821906e-05,
376
+ "loss": 1.3875,
377
+ "step": 60
378
+ },
379
+ {
380
+ "epoch": 0.03,
381
+ "learning_rate": 1.9991799540836867e-05,
382
+ "loss": 1.4965,
383
+ "step": 61
384
+ },
385
+ {
386
+ "epoch": 0.03,
387
+ "learning_rate": 1.999147484754149e-05,
388
+ "loss": 1.304,
389
+ "step": 62
390
+ },
391
+ {
392
+ "epoch": 0.03,
393
+ "learning_rate": 1.9991143853140543e-05,
394
+ "loss": 1.5476,
395
+ "step": 63
396
+ },
397
+ {
398
+ "epoch": 0.03,
399
+ "learning_rate": 1.9990806557842758e-05,
400
+ "loss": 1.609,
401
+ "step": 64
402
+ },
403
+ {
404
+ "epoch": 0.03,
405
+ "learning_rate": 1.999046296186086e-05,
406
+ "loss": 1.5958,
407
+ "step": 65
408
+ },
409
+ {
410
+ "epoch": 0.03,
411
+ "learning_rate": 1.9990113065411532e-05,
412
+ "loss": 1.6518,
413
+ "step": 66
414
+ },
415
+ {
416
+ "epoch": 0.03,
417
+ "learning_rate": 1.9989756868715435e-05,
418
+ "loss": 1.6508,
419
+ "step": 67
420
+ },
421
+ {
422
+ "epoch": 0.03,
423
+ "learning_rate": 1.9989394371997205e-05,
424
+ "loss": 1.6813,
425
+ "step": 68
426
+ },
427
+ {
428
+ "epoch": 0.03,
429
+ "learning_rate": 1.9989025575485453e-05,
430
+ "loss": 1.5673,
431
+ "step": 69
432
+ },
433
+ {
434
+ "epoch": 0.04,
435
+ "learning_rate": 1.9988650479412754e-05,
436
+ "loss": 1.2511,
437
+ "step": 70
438
+ },
439
+ {
440
+ "epoch": 0.04,
441
+ "learning_rate": 1.9988269084015668e-05,
442
+ "loss": 1.6433,
443
+ "step": 71
444
+ },
445
+ {
446
+ "epoch": 0.04,
447
+ "learning_rate": 1.9987881389534715e-05,
448
+ "loss": 1.7642,
449
+ "step": 72
450
+ },
451
+ {
452
+ "epoch": 0.04,
453
+ "learning_rate": 1.99874873962144e-05,
454
+ "loss": 1.2926,
455
+ "step": 73
456
+ },
457
+ {
458
+ "epoch": 0.04,
459
+ "learning_rate": 1.9987087104303188e-05,
460
+ "loss": 1.1941,
461
+ "step": 74
462
+ },
463
+ {
464
+ "epoch": 0.04,
465
+ "learning_rate": 1.9986680514053526e-05,
466
+ "loss": 1.6356,
467
+ "step": 75
468
+ },
469
+ {
470
+ "epoch": 0.04,
471
+ "learning_rate": 1.998626762572183e-05,
472
+ "loss": 1.6645,
473
+ "step": 76
474
+ },
475
+ {
476
+ "epoch": 0.04,
477
+ "learning_rate": 1.9985848439568486e-05,
478
+ "loss": 1.0501,
479
+ "step": 77
480
+ },
481
+ {
482
+ "epoch": 0.04,
483
+ "learning_rate": 1.998542295585785e-05,
484
+ "loss": 1.1477,
485
+ "step": 78
486
+ },
487
+ {
488
+ "epoch": 0.04,
489
+ "learning_rate": 1.998499117485826e-05,
490
+ "loss": 1.1104,
491
+ "step": 79
492
+ },
493
+ {
494
+ "epoch": 0.04,
495
+ "learning_rate": 1.998455309684201e-05,
496
+ "loss": 1.2144,
497
+ "step": 80
498
+ },
499
+ {
500
+ "epoch": 0.04,
501
+ "learning_rate": 1.9984108722085378e-05,
502
+ "loss": 1.6791,
503
+ "step": 81
504
+ },
505
+ {
506
+ "epoch": 0.04,
507
+ "learning_rate": 1.998365805086861e-05,
508
+ "loss": 1.2276,
509
+ "step": 82
510
+ },
511
+ {
512
+ "epoch": 0.04,
513
+ "learning_rate": 1.998320108347591e-05,
514
+ "loss": 1.6222,
515
+ "step": 83
516
+ },
517
+ {
518
+ "epoch": 0.04,
519
+ "learning_rate": 1.998273782019548e-05,
520
+ "loss": 1.6216,
521
+ "step": 84
522
+ },
523
+ {
524
+ "epoch": 0.04,
525
+ "learning_rate": 1.9982268261319462e-05,
526
+ "loss": 1.332,
527
+ "step": 85
528
+ },
529
+ {
530
+ "epoch": 0.04,
531
+ "learning_rate": 1.9981792407143988e-05,
532
+ "loss": 1.3808,
533
+ "step": 86
534
+ },
535
+ {
536
+ "epoch": 0.04,
537
+ "learning_rate": 1.9981310257969158e-05,
538
+ "loss": 1.4833,
539
+ "step": 87
540
+ },
541
+ {
542
+ "epoch": 0.04,
543
+ "learning_rate": 1.9980821814099033e-05,
544
+ "loss": 1.5134,
545
+ "step": 88
546
+ },
547
+ {
548
+ "epoch": 0.04,
549
+ "learning_rate": 1.998032707584165e-05,
550
+ "loss": 1.6795,
551
+ "step": 89
552
+ },
553
+ {
554
+ "epoch": 0.05,
555
+ "learning_rate": 1.997982604350902e-05,
556
+ "loss": 1.1978,
557
+ "step": 90
558
+ },
559
+ {
560
+ "epoch": 0.05,
561
+ "learning_rate": 1.9979318717417112e-05,
562
+ "loss": 1.6426,
563
+ "step": 91
564
+ },
565
+ {
566
+ "epoch": 0.05,
567
+ "learning_rate": 1.997880509788587e-05,
568
+ "loss": 1.5072,
569
+ "step": 92
570
+ },
571
+ {
572
+ "epoch": 0.05,
573
+ "learning_rate": 1.9978285185239215e-05,
574
+ "loss": 1.5113,
575
+ "step": 93
576
+ },
577
+ {
578
+ "epoch": 0.05,
579
+ "learning_rate": 1.997775897980502e-05,
580
+ "loss": 1.6025,
581
+ "step": 94
582
+ },
583
+ {
584
+ "epoch": 0.05,
585
+ "learning_rate": 1.997722648191514e-05,
586
+ "loss": 1.5437,
587
+ "step": 95
588
+ },
589
+ {
590
+ "epoch": 0.05,
591
+ "learning_rate": 1.9976687691905394e-05,
592
+ "loss": 0.8807,
593
+ "step": 96
594
+ },
595
+ {
596
+ "epoch": 0.05,
597
+ "learning_rate": 1.9976142610115567e-05,
598
+ "loss": 1.2017,
599
+ "step": 97
600
+ },
601
+ {
602
+ "epoch": 0.05,
603
+ "learning_rate": 1.9975591236889414e-05,
604
+ "loss": 1.571,
605
+ "step": 98
606
+ },
607
+ {
608
+ "epoch": 0.05,
609
+ "learning_rate": 1.997503357257466e-05,
610
+ "loss": 1.2984,
611
+ "step": 99
612
+ },
613
+ {
614
+ "epoch": 0.05,
615
+ "learning_rate": 1.9974469617522992e-05,
616
+ "loss": 1.6714,
617
+ "step": 100
618
+ },
619
+ {
620
+ "epoch": 0.05,
621
+ "learning_rate": 1.997389937209007e-05,
622
+ "loss": 1.8847,
623
+ "step": 101
624
+ },
625
+ {
626
+ "epoch": 0.05,
627
+ "learning_rate": 1.9973322836635517e-05,
628
+ "loss": 1.2481,
629
+ "step": 102
630
+ },
631
+ {
632
+ "epoch": 0.05,
633
+ "learning_rate": 1.9972740011522927e-05,
634
+ "loss": 1.3737,
635
+ "step": 103
636
+ },
637
+ {
638
+ "epoch": 0.05,
639
+ "learning_rate": 1.997215089711985e-05,
640
+ "loss": 1.1397,
641
+ "step": 104
642
+ },
643
+ {
644
+ "epoch": 0.05,
645
+ "learning_rate": 1.9971555493797817e-05,
646
+ "loss": 0.7657,
647
+ "step": 105
648
+ },
649
+ {
650
+ "epoch": 0.05,
651
+ "learning_rate": 1.9970953801932313e-05,
652
+ "loss": 1.2579,
653
+ "step": 106
654
+ },
655
+ {
656
+ "epoch": 0.05,
657
+ "learning_rate": 1.9970345821902795e-05,
658
+ "loss": 1.588,
659
+ "step": 107
660
+ },
661
+ {
662
+ "epoch": 0.05,
663
+ "learning_rate": 1.996973155409269e-05,
664
+ "loss": 1.0317,
665
+ "step": 108
666
+ },
667
+ {
668
+ "epoch": 0.05,
669
+ "learning_rate": 1.996911099888938e-05,
670
+ "loss": 1.6896,
671
+ "step": 109
672
+ },
673
+ {
674
+ "epoch": 0.06,
675
+ "learning_rate": 1.9968484156684215e-05,
676
+ "loss": 1.7309,
677
+ "step": 110
678
+ },
679
+ {
680
+ "epoch": 0.06,
681
+ "learning_rate": 1.996785102787252e-05,
682
+ "loss": 1.0569,
683
+ "step": 111
684
+ },
685
+ {
686
+ "epoch": 0.06,
687
+ "learning_rate": 1.9967211612853566e-05,
688
+ "loss": 1.8228,
689
+ "step": 112
690
+ },
691
+ {
692
+ "epoch": 0.06,
693
+ "learning_rate": 1.9966565912030607e-05,
694
+ "loss": 1.4042,
695
+ "step": 113
696
+ },
697
+ {
698
+ "epoch": 0.06,
699
+ "learning_rate": 1.9965913925810847e-05,
700
+ "loss": 1.2318,
701
+ "step": 114
702
+ },
703
+ {
704
+ "epoch": 0.06,
705
+ "learning_rate": 1.9965255654605466e-05,
706
+ "loss": 1.6043,
707
+ "step": 115
708
+ },
709
+ {
710
+ "epoch": 0.06,
711
+ "learning_rate": 1.99645910988296e-05,
712
+ "loss": 1.7256,
713
+ "step": 116
714
+ },
715
+ {
716
+ "epoch": 0.06,
717
+ "learning_rate": 1.9963920258902344e-05,
718
+ "loss": 1.477,
719
+ "step": 117
720
+ },
721
+ {
722
+ "epoch": 0.06,
723
+ "learning_rate": 1.996324313524677e-05,
724
+ "loss": 1.4139,
725
+ "step": 118
726
+ },
727
+ {
728
+ "epoch": 0.06,
729
+ "learning_rate": 1.99625597282899e-05,
730
+ "loss": 1.4781,
731
+ "step": 119
732
+ },
733
+ {
734
+ "epoch": 0.06,
735
+ "learning_rate": 1.9961870038462727e-05,
736
+ "loss": 1.1951,
737
+ "step": 120
738
+ },
739
+ {
740
+ "epoch": 0.06,
741
+ "learning_rate": 1.99611740662002e-05,
742
+ "loss": 1.2997,
743
+ "step": 121
744
+ },
745
+ {
746
+ "epoch": 0.06,
747
+ "learning_rate": 1.996047181194123e-05,
748
+ "loss": 1.2891,
749
+ "step": 122
750
+ },
751
+ {
752
+ "epoch": 0.06,
753
+ "learning_rate": 1.99597632761287e-05,
754
+ "loss": 2.083,
755
+ "step": 123
756
+ },
757
+ {
758
+ "epoch": 0.06,
759
+ "learning_rate": 1.995904845920944e-05,
760
+ "loss": 1.3798,
761
+ "step": 124
762
+ },
763
+ {
764
+ "epoch": 0.06,
765
+ "learning_rate": 1.9958327361634248e-05,
766
+ "loss": 1.3713,
767
+ "step": 125
768
+ },
769
+ {
770
+ "epoch": 0.06,
771
+ "learning_rate": 1.995759998385789e-05,
772
+ "loss": 1.2818,
773
+ "step": 126
774
+ },
775
+ {
776
+ "epoch": 0.06,
777
+ "learning_rate": 1.9956866326339076e-05,
778
+ "loss": 2.1837,
779
+ "step": 127
780
+ },
781
+ {
782
+ "epoch": 0.06,
783
+ "learning_rate": 1.9956126389540493e-05,
784
+ "loss": 1.3562,
785
+ "step": 128
786
+ },
787
+ {
788
+ "epoch": 0.07,
789
+ "learning_rate": 1.9955380173928777e-05,
790
+ "loss": 1.4653,
791
+ "step": 129
792
+ },
793
+ {
794
+ "epoch": 0.07,
795
+ "learning_rate": 1.995462767997453e-05,
796
+ "loss": 1.5638,
797
+ "step": 130
798
+ },
799
+ {
800
+ "epoch": 0.07,
801
+ "learning_rate": 1.995386890815231e-05,
802
+ "loss": 1.3003,
803
+ "step": 131
804
+ },
805
+ {
806
+ "epoch": 0.07,
807
+ "learning_rate": 1.9953103858940633e-05,
808
+ "loss": 1.676,
809
+ "step": 132
810
+ },
811
+ {
812
+ "epoch": 0.07,
813
+ "learning_rate": 1.995233253282198e-05,
814
+ "loss": 1.5618,
815
+ "step": 133
816
+ },
817
+ {
818
+ "epoch": 0.07,
819
+ "learning_rate": 1.9951554930282782e-05,
820
+ "loss": 0.9876,
821
+ "step": 134
822
+ },
823
+ {
824
+ "epoch": 0.07,
825
+ "learning_rate": 1.9950771051813435e-05,
826
+ "loss": 1.3107,
827
+ "step": 135
828
+ },
829
+ {
830
+ "epoch": 0.07,
831
+ "learning_rate": 1.994998089790829e-05,
832
+ "loss": 1.3858,
833
+ "step": 136
834
+ },
835
+ {
836
+ "epoch": 0.07,
837
+ "learning_rate": 1.994918446906566e-05,
838
+ "loss": 1.7285,
839
+ "step": 137
840
+ },
841
+ {
842
+ "epoch": 0.07,
843
+ "learning_rate": 1.9948381765787802e-05,
844
+ "loss": 1.5864,
845
+ "step": 138
846
+ },
847
+ {
848
+ "epoch": 0.07,
849
+ "learning_rate": 1.994757278858095e-05,
850
+ "loss": 1.6605,
851
+ "step": 139
852
+ },
853
+ {
854
+ "epoch": 0.07,
855
+ "learning_rate": 1.994675753795528e-05,
856
+ "loss": 1.3543,
857
+ "step": 140
858
+ },
859
+ {
860
+ "epoch": 0.07,
861
+ "learning_rate": 1.9945936014424924e-05,
862
+ "loss": 1.481,
863
+ "step": 141
864
+ },
865
+ {
866
+ "epoch": 0.07,
867
+ "learning_rate": 1.9945108218507976e-05,
868
+ "loss": 1.5271,
869
+ "step": 142
870
+ },
871
+ {
872
+ "epoch": 0.07,
873
+ "learning_rate": 1.994427415072649e-05,
874
+ "loss": 1.4439,
875
+ "step": 143
876
+ },
877
+ {
878
+ "epoch": 0.07,
879
+ "learning_rate": 1.9943433811606465e-05,
880
+ "loss": 1.5647,
881
+ "step": 144
882
+ },
883
+ {
884
+ "epoch": 0.07,
885
+ "learning_rate": 1.994258720167786e-05,
886
+ "loss": 1.2134,
887
+ "step": 145
888
+ },
889
+ {
890
+ "epoch": 0.07,
891
+ "learning_rate": 1.9941734321474586e-05,
892
+ "loss": 1.3431,
893
+ "step": 146
894
+ },
895
+ {
896
+ "epoch": 0.07,
897
+ "learning_rate": 1.994087517153451e-05,
898
+ "loss": 1.6574,
899
+ "step": 147
900
+ },
901
+ {
902
+ "epoch": 0.07,
903
+ "learning_rate": 1.9940009752399462e-05,
904
+ "loss": 1.3856,
905
+ "step": 148
906
+ },
907
+ {
908
+ "epoch": 0.08,
909
+ "learning_rate": 1.9939138064615205e-05,
910
+ "loss": 1.2281,
911
+ "step": 149
912
+ },
913
+ {
914
+ "epoch": 0.08,
915
+ "learning_rate": 1.9938260108731474e-05,
916
+ "loss": 1.7524,
917
+ "step": 150
918
+ },
919
+ {
920
+ "epoch": 0.08,
921
+ "learning_rate": 1.9937375885301948e-05,
922
+ "loss": 1.4849,
923
+ "step": 151
924
+ },
925
+ {
926
+ "epoch": 0.08,
927
+ "learning_rate": 1.9936485394884263e-05,
928
+ "loss": 1.6183,
929
+ "step": 152
930
+ },
931
+ {
932
+ "epoch": 0.08,
933
+ "learning_rate": 1.9935588638040005e-05,
934
+ "loss": 1.854,
935
+ "step": 153
936
+ },
937
+ {
938
+ "epoch": 0.08,
939
+ "learning_rate": 1.993468561533471e-05,
940
+ "loss": 1.6805,
941
+ "step": 154
942
+ },
943
+ {
944
+ "epoch": 0.08,
945
+ "learning_rate": 1.993377632733787e-05,
946
+ "loss": 1.3257,
947
+ "step": 155
948
+ },
949
+ {
950
+ "epoch": 0.08,
951
+ "learning_rate": 1.993286077462292e-05,
952
+ "loss": 1.5286,
953
+ "step": 156
954
+ },
955
+ {
956
+ "epoch": 0.08,
957
+ "learning_rate": 1.993193895776726e-05,
958
+ "loss": 1.7098,
959
+ "step": 157
960
+ },
961
+ {
962
+ "epoch": 0.08,
963
+ "learning_rate": 1.993101087735223e-05,
964
+ "loss": 2.0118,
965
+ "step": 158
966
+ },
967
+ {
968
+ "epoch": 0.08,
969
+ "learning_rate": 1.9930076533963117e-05,
970
+ "loss": 1.0722,
971
+ "step": 159
972
+ },
973
+ {
974
+ "epoch": 0.08,
975
+ "learning_rate": 1.992913592818917e-05,
976
+ "loss": 1.1482,
977
+ "step": 160
978
+ },
979
+ {
980
+ "epoch": 0.08,
981
+ "learning_rate": 1.9928189060623574e-05,
982
+ "loss": 1.5841,
983
+ "step": 161
984
+ },
985
+ {
986
+ "epoch": 0.08,
987
+ "learning_rate": 1.9927235931863477e-05,
988
+ "loss": 1.3712,
989
+ "step": 162
990
+ },
991
+ {
992
+ "epoch": 0.08,
993
+ "learning_rate": 1.992627654250996e-05,
994
+ "loss": 1.563,
995
+ "step": 163
996
+ },
997
+ {
998
+ "epoch": 0.08,
999
+ "learning_rate": 1.992531089316806e-05,
1000
+ "loss": 1.1601,
1001
+ "step": 164
1002
+ },
1003
+ {
1004
+ "epoch": 0.08,
1005
+ "learning_rate": 1.9924338984446773e-05,
1006
+ "loss": 1.5141,
1007
+ "step": 165
1008
+ },
1009
+ {
1010
+ "epoch": 0.08,
1011
+ "learning_rate": 1.9923360816959016e-05,
1012
+ "loss": 1.6872,
1013
+ "step": 166
1014
+ },
1015
+ {
1016
+ "epoch": 0.08,
1017
+ "learning_rate": 1.992237639132168e-05,
1018
+ "loss": 1.6658,
1019
+ "step": 167
1020
+ },
1021
+ {
1022
+ "epoch": 0.08,
1023
+ "learning_rate": 1.9921385708155588e-05,
1024
+ "loss": 1.5354,
1025
+ "step": 168
1026
+ },
1027
+ {
1028
+ "epoch": 0.09,
1029
+ "learning_rate": 1.9920388768085513e-05,
1030
+ "loss": 1.457,
1031
+ "step": 169
1032
+ },
1033
+ {
1034
+ "epoch": 0.09,
1035
+ "learning_rate": 1.9919385571740172e-05,
1036
+ "loss": 1.5823,
1037
+ "step": 170
1038
+ },
1039
+ {
1040
+ "epoch": 0.09,
1041
+ "learning_rate": 1.991837611975223e-05,
1042
+ "loss": 1.5392,
1043
+ "step": 171
1044
+ },
1045
+ {
1046
+ "epoch": 0.09,
1047
+ "learning_rate": 1.9917360412758295e-05,
1048
+ "loss": 1.3985,
1049
+ "step": 172
1050
+ },
1051
+ {
1052
+ "epoch": 0.09,
1053
+ "learning_rate": 1.9916338451398923e-05,
1054
+ "loss": 1.1896,
1055
+ "step": 173
1056
+ },
1057
+ {
1058
+ "epoch": 0.09,
1059
+ "learning_rate": 1.9915310236318607e-05,
1060
+ "loss": 1.2652,
1061
+ "step": 174
1062
+ },
1063
+ {
1064
+ "epoch": 0.09,
1065
+ "learning_rate": 1.9914275768165793e-05,
1066
+ "loss": 1.0745,
1067
+ "step": 175
1068
+ },
1069
+ {
1070
+ "epoch": 0.09,
1071
+ "learning_rate": 1.991323504759287e-05,
1072
+ "loss": 1.8471,
1073
+ "step": 176
1074
+ },
1075
+ {
1076
+ "epoch": 0.09,
1077
+ "learning_rate": 1.991218807525616e-05,
1078
+ "loss": 1.871,
1079
+ "step": 177
1080
+ },
1081
+ {
1082
+ "epoch": 0.09,
1083
+ "learning_rate": 1.9911134851815935e-05,
1084
+ "loss": 1.3217,
1085
+ "step": 178
1086
+ },
1087
+ {
1088
+ "epoch": 0.09,
1089
+ "learning_rate": 1.9910075377936414e-05,
1090
+ "loss": 1.4894,
1091
+ "step": 179
1092
+ },
1093
+ {
1094
+ "epoch": 0.09,
1095
+ "learning_rate": 1.9909009654285748e-05,
1096
+ "loss": 1.1755,
1097
+ "step": 180
1098
+ },
1099
+ {
1100
+ "epoch": 0.09,
1101
+ "learning_rate": 1.9907937681536032e-05,
1102
+ "loss": 1.6328,
1103
+ "step": 181
1104
+ },
1105
+ {
1106
+ "epoch": 0.09,
1107
+ "learning_rate": 1.9906859460363307e-05,
1108
+ "loss": 1.4971,
1109
+ "step": 182
1110
+ },
1111
+ {
1112
+ "epoch": 0.09,
1113
+ "learning_rate": 1.9905774991447552e-05,
1114
+ "loss": 1.4121,
1115
+ "step": 183
1116
+ },
1117
+ {
1118
+ "epoch": 0.09,
1119
+ "learning_rate": 1.9904684275472684e-05,
1120
+ "loss": 1.5965,
1121
+ "step": 184
1122
+ },
1123
+ {
1124
+ "epoch": 0.09,
1125
+ "learning_rate": 1.9903587313126557e-05,
1126
+ "loss": 1.21,
1127
+ "step": 185
1128
+ },
1129
+ {
1130
+ "epoch": 0.09,
1131
+ "learning_rate": 1.9902484105100974e-05,
1132
+ "loss": 1.8833,
1133
+ "step": 186
1134
+ },
1135
+ {
1136
+ "epoch": 0.09,
1137
+ "learning_rate": 1.9901374652091666e-05,
1138
+ "loss": 1.0323,
1139
+ "step": 187
1140
+ },
1141
+ {
1142
+ "epoch": 0.09,
1143
+ "learning_rate": 1.9900258954798315e-05,
1144
+ "loss": 1.5577,
1145
+ "step": 188
1146
+ },
1147
+ {
1148
+ "epoch": 0.1,
1149
+ "learning_rate": 1.989913701392453e-05,
1150
+ "loss": 1.8889,
1151
+ "step": 189
1152
+ },
1153
+ {
1154
+ "epoch": 0.1,
1155
+ "learning_rate": 1.9898008830177856e-05,
1156
+ "loss": 1.6154,
1157
+ "step": 190
1158
+ },
1159
+ {
1160
+ "epoch": 0.1,
1161
+ "learning_rate": 1.9896874404269786e-05,
1162
+ "loss": 1.5606,
1163
+ "step": 191
1164
+ },
1165
+ {
1166
+ "epoch": 0.1,
1167
+ "learning_rate": 1.989573373691574e-05,
1168
+ "loss": 1.2633,
1169
+ "step": 192
1170
+ },
1171
+ {
1172
+ "epoch": 0.1,
1173
+ "learning_rate": 1.989458682883508e-05,
1174
+ "loss": 1.2808,
1175
+ "step": 193
1176
+ },
1177
+ {
1178
+ "epoch": 0.1,
1179
+ "learning_rate": 1.9893433680751105e-05,
1180
+ "loss": 1.5281,
1181
+ "step": 194
1182
+ },
1183
+ {
1184
+ "epoch": 0.1,
1185
+ "learning_rate": 1.9892274293391035e-05,
1186
+ "loss": 1.1487,
1187
+ "step": 195
1188
+ },
1189
+ {
1190
+ "epoch": 0.1,
1191
+ "learning_rate": 1.9891108667486047e-05,
1192
+ "loss": 1.1523,
1193
+ "step": 196
1194
+ },
1195
+ {
1196
+ "epoch": 0.1,
1197
+ "learning_rate": 1.9889936803771237e-05,
1198
+ "loss": 1.3093,
1199
+ "step": 197
1200
+ },
1201
+ {
1202
+ "epoch": 0.1,
1203
+ "learning_rate": 1.9888758702985637e-05,
1204
+ "loss": 1.249,
1205
+ "step": 198
1206
+ },
1207
+ {
1208
+ "epoch": 0.1,
1209
+ "learning_rate": 1.9887574365872214e-05,
1210
+ "loss": 1.1357,
1211
+ "step": 199
1212
+ },
1213
+ {
1214
+ "epoch": 0.1,
1215
+ "learning_rate": 1.988638379317787e-05,
1216
+ "loss": 1.5416,
1217
+ "step": 200
1218
+ },
1219
+ {
1220
+ "epoch": 0.1,
1221
+ "learning_rate": 1.988518698565344e-05,
1222
+ "loss": 1.63,
1223
+ "step": 201
1224
+ },
1225
+ {
1226
+ "epoch": 0.1,
1227
+ "learning_rate": 1.9883983944053678e-05,
1228
+ "loss": 1.194,
1229
+ "step": 202
1230
+ },
1231
+ {
1232
+ "epoch": 0.1,
1233
+ "learning_rate": 1.9882774669137293e-05,
1234
+ "loss": 1.281,
1235
+ "step": 203
1236
+ },
1237
+ {
1238
+ "epoch": 0.1,
1239
+ "learning_rate": 1.9881559161666905e-05,
1240
+ "loss": 1.1447,
1241
+ "step": 204
1242
+ },
1243
+ {
1244
+ "epoch": 0.1,
1245
+ "learning_rate": 1.988033742240907e-05,
1246
+ "loss": 1.7913,
1247
+ "step": 205
1248
+ },
1249
+ {
1250
+ "epoch": 0.1,
1251
+ "learning_rate": 1.9879109452134283e-05,
1252
+ "loss": 1.5167,
1253
+ "step": 206
1254
+ },
1255
+ {
1256
+ "epoch": 0.1,
1257
+ "learning_rate": 1.9877875251616954e-05,
1258
+ "loss": 1.2428,
1259
+ "step": 207
1260
+ },
1261
+ {
1262
+ "epoch": 0.1,
1263
+ "learning_rate": 1.9876634821635432e-05,
1264
+ "loss": 1.3816,
1265
+ "step": 208
1266
+ },
1267
+ {
1268
+ "epoch": 0.11,
1269
+ "learning_rate": 1.9875388162971992e-05,
1270
+ "loss": 1.4307,
1271
+ "step": 209
1272
+ },
1273
+ {
1274
+ "epoch": 0.11,
1275
+ "learning_rate": 1.9874135276412837e-05,
1276
+ "loss": 1.3444,
1277
+ "step": 210
1278
+ },
1279
+ {
1280
+ "epoch": 0.11,
1281
+ "learning_rate": 1.98728761627481e-05,
1282
+ "loss": 1.3973,
1283
+ "step": 211
1284
+ },
1285
+ {
1286
+ "epoch": 0.11,
1287
+ "learning_rate": 1.9871610822771835e-05,
1288
+ "loss": 1.4477,
1289
+ "step": 212
1290
+ },
1291
+ {
1292
+ "epoch": 0.11,
1293
+ "learning_rate": 1.9870339257282028e-05,
1294
+ "loss": 1.0952,
1295
+ "step": 213
1296
+ },
1297
+ {
1298
+ "epoch": 0.11,
1299
+ "learning_rate": 1.9869061467080587e-05,
1300
+ "loss": 1.582,
1301
+ "step": 214
1302
+ },
1303
+ {
1304
+ "epoch": 0.11,
1305
+ "learning_rate": 1.9867777452973352e-05,
1306
+ "loss": 1.4796,
1307
+ "step": 215
1308
+ },
1309
+ {
1310
+ "epoch": 0.11,
1311
+ "learning_rate": 1.9866487215770084e-05,
1312
+ "loss": 0.996,
1313
+ "step": 216
1314
+ },
1315
+ {
1316
+ "epoch": 0.11,
1317
+ "learning_rate": 1.9865190756284467e-05,
1318
+ "loss": 1.2355,
1319
+ "step": 217
1320
+ },
1321
+ {
1322
+ "epoch": 0.11,
1323
+ "learning_rate": 1.9863888075334113e-05,
1324
+ "loss": 1.3907,
1325
+ "step": 218
1326
+ },
1327
+ {
1328
+ "epoch": 0.11,
1329
+ "learning_rate": 1.986257917374055e-05,
1330
+ "loss": 1.5925,
1331
+ "step": 219
1332
+ },
1333
+ {
1334
+ "epoch": 0.11,
1335
+ "learning_rate": 1.986126405232924e-05,
1336
+ "loss": 1.3692,
1337
+ "step": 220
1338
+ },
1339
+ {
1340
+ "epoch": 0.11,
1341
+ "learning_rate": 1.9859942711929557e-05,
1342
+ "loss": 1.2802,
1343
+ "step": 221
1344
+ },
1345
+ {
1346
+ "epoch": 0.11,
1347
+ "learning_rate": 1.9858615153374808e-05,
1348
+ "loss": 1.3644,
1349
+ "step": 222
1350
+ },
1351
+ {
1352
+ "epoch": 0.11,
1353
+ "learning_rate": 1.985728137750221e-05,
1354
+ "loss": 1.1744,
1355
+ "step": 223
1356
+ },
1357
+ {
1358
+ "epoch": 0.11,
1359
+ "learning_rate": 1.985594138515291e-05,
1360
+ "loss": 1.4946,
1361
+ "step": 224
1362
+ },
1363
+ {
1364
+ "epoch": 0.11,
1365
+ "learning_rate": 1.9854595177171968e-05,
1366
+ "loss": 1.6203,
1367
+ "step": 225
1368
+ },
1369
+ {
1370
+ "epoch": 0.11,
1371
+ "learning_rate": 1.9853242754408376e-05,
1372
+ "loss": 1.5148,
1373
+ "step": 226
1374
+ },
1375
+ {
1376
+ "epoch": 0.11,
1377
+ "learning_rate": 1.9851884117715027e-05,
1378
+ "loss": 1.7796,
1379
+ "step": 227
1380
+ },
1381
+ {
1382
+ "epoch": 0.11,
1383
+ "learning_rate": 1.9850519267948747e-05,
1384
+ "loss": 1.0399,
1385
+ "step": 228
1386
+ },
1387
+ {
1388
+ "epoch": 0.12,
1389
+ "learning_rate": 1.9849148205970275e-05,
1390
+ "loss": 1.1837,
1391
+ "step": 229
1392
+ },
1393
+ {
1394
+ "epoch": 0.12,
1395
+ "learning_rate": 1.984777093264427e-05,
1396
+ "loss": 1.3893,
1397
+ "step": 230
1398
+ },
1399
+ {
1400
+ "epoch": 0.12,
1401
+ "learning_rate": 1.9846387448839308e-05,
1402
+ "loss": 1.2283,
1403
+ "step": 231
1404
+ },
1405
+ {
1406
+ "epoch": 0.12,
1407
+ "learning_rate": 1.9844997755427875e-05,
1408
+ "loss": 1.0594,
1409
+ "step": 232
1410
+ },
1411
+ {
1412
+ "epoch": 0.12,
1413
+ "learning_rate": 1.984360185328639e-05,
1414
+ "loss": 1.5023,
1415
+ "step": 233
1416
+ },
1417
+ {
1418
+ "epoch": 0.12,
1419
+ "learning_rate": 1.9842199743295164e-05,
1420
+ "loss": 1.619,
1421
+ "step": 234
1422
+ },
1423
+ {
1424
+ "epoch": 0.12,
1425
+ "learning_rate": 1.984079142633844e-05,
1426
+ "loss": 0.9526,
1427
+ "step": 235
1428
+ },
1429
+ {
1430
+ "epoch": 0.12,
1431
+ "learning_rate": 1.983937690330437e-05,
1432
+ "loss": 1.3427,
1433
+ "step": 236
1434
+ },
1435
+ {
1436
+ "epoch": 0.12,
1437
+ "learning_rate": 1.983795617508502e-05,
1438
+ "loss": 1.1187,
1439
+ "step": 237
1440
+ },
1441
+ {
1442
+ "epoch": 0.12,
1443
+ "learning_rate": 1.9836529242576373e-05,
1444
+ "loss": 1.2346,
1445
+ "step": 238
1446
+ },
1447
+ {
1448
+ "epoch": 0.12,
1449
+ "learning_rate": 1.983509610667832e-05,
1450
+ "loss": 1.8011,
1451
+ "step": 239
1452
+ },
1453
+ {
1454
+ "epoch": 0.12,
1455
+ "learning_rate": 1.983365676829466e-05,
1456
+ "loss": 1.1902,
1457
+ "step": 240
1458
+ },
1459
+ {
1460
+ "epoch": 0.12,
1461
+ "learning_rate": 1.983221122833312e-05,
1462
+ "loss": 1.3564,
1463
+ "step": 241
1464
+ },
1465
+ {
1466
+ "epoch": 0.12,
1467
+ "learning_rate": 1.983075948770532e-05,
1468
+ "loss": 1.2038,
1469
+ "step": 242
1470
+ },
1471
+ {
1472
+ "epoch": 0.12,
1473
+ "learning_rate": 1.9829301547326794e-05,
1474
+ "loss": 1.3158,
1475
+ "step": 243
1476
+ },
1477
+ {
1478
+ "epoch": 0.12,
1479
+ "learning_rate": 1.9827837408116996e-05,
1480
+ "loss": 1.6507,
1481
+ "step": 244
1482
+ },
1483
+ {
1484
+ "epoch": 0.12,
1485
+ "learning_rate": 1.9826367070999284e-05,
1486
+ "loss": 1.8778,
1487
+ "step": 245
1488
+ },
1489
+ {
1490
+ "epoch": 0.12,
1491
+ "learning_rate": 1.9824890536900917e-05,
1492
+ "loss": 1.3691,
1493
+ "step": 246
1494
+ },
1495
+ {
1496
+ "epoch": 0.12,
1497
+ "learning_rate": 1.982340780675307e-05,
1498
+ "loss": 1.3956,
1499
+ "step": 247
1500
+ },
1501
+ {
1502
+ "epoch": 0.13,
1503
+ "learning_rate": 1.982191888149083e-05,
1504
+ "loss": 1.275,
1505
+ "step": 248
1506
+ },
1507
+ {
1508
+ "epoch": 0.13,
1509
+ "eval_loss": 1.4743634462356567,
1510
+ "eval_runtime": 99.6539,
1511
+ "eval_samples_per_second": 1.164,
1512
+ "eval_steps_per_second": 1.164,
1513
+ "step": 248
1514
+ },
1515
+ {
1516
+ "epoch": 0.13,
1517
+ "learning_rate": 1.9820423762053178e-05,
1518
+ "loss": 1.3582,
1519
+ "step": 249
1520
+ },
1521
+ {
1522
+ "epoch": 0.13,
1523
+ "learning_rate": 1.981892244938301e-05,
1524
+ "loss": 1.3869,
1525
+ "step": 250
1526
+ },
1527
+ {
1528
+ "epoch": 0.13,
1529
+ "learning_rate": 1.9817414944427133e-05,
1530
+ "loss": 1.2653,
1531
+ "step": 251
1532
+ },
1533
+ {
1534
+ "epoch": 0.13,
1535
+ "learning_rate": 1.9815901248136242e-05,
1536
+ "loss": 1.3705,
1537
+ "step": 252
1538
+ },
1539
+ {
1540
+ "epoch": 0.13,
1541
+ "learning_rate": 1.9814381361464953e-05,
1542
+ "loss": 1.5251,
1543
+ "step": 253
1544
+ },
1545
+ {
1546
+ "epoch": 0.13,
1547
+ "learning_rate": 1.9812855285371778e-05,
1548
+ "loss": 1.5613,
1549
+ "step": 254
1550
+ },
1551
+ {
1552
+ "epoch": 0.13,
1553
+ "learning_rate": 1.9811323020819136e-05,
1554
+ "loss": 1.3138,
1555
+ "step": 255
1556
+ },
1557
+ {
1558
+ "epoch": 0.13,
1559
+ "learning_rate": 1.980978456877334e-05,
1560
+ "loss": 1.0931,
1561
+ "step": 256
1562
+ },
1563
+ {
1564
+ "epoch": 0.13,
1565
+ "learning_rate": 1.9808239930204625e-05,
1566
+ "loss": 1.4202,
1567
+ "step": 257
1568
+ },
1569
+ {
1570
+ "epoch": 0.13,
1571
+ "learning_rate": 1.98066891060871e-05,
1572
+ "loss": 1.2566,
1573
+ "step": 258
1574
+ },
1575
+ {
1576
+ "epoch": 0.13,
1577
+ "learning_rate": 1.98051320973988e-05,
1578
+ "loss": 1.1673,
1579
+ "step": 259
1580
+ },
1581
+ {
1582
+ "epoch": 0.13,
1583
+ "learning_rate": 1.9803568905121647e-05,
1584
+ "loss": 1.2889,
1585
+ "step": 260
1586
+ },
1587
+ {
1588
+ "epoch": 0.13,
1589
+ "learning_rate": 1.980199953024146e-05,
1590
+ "loss": 1.3371,
1591
+ "step": 261
1592
+ },
1593
+ {
1594
+ "epoch": 0.13,
1595
+ "learning_rate": 1.9800423973747972e-05,
1596
+ "loss": 1.4299,
1597
+ "step": 262
1598
+ },
1599
+ {
1600
+ "epoch": 0.13,
1601
+ "learning_rate": 1.9798842236634797e-05,
1602
+ "loss": 1.4825,
1603
+ "step": 263
1604
+ },
1605
+ {
1606
+ "epoch": 0.13,
1607
+ "learning_rate": 1.9797254319899453e-05,
1608
+ "loss": 1.2745,
1609
+ "step": 264
1610
+ },
1611
+ {
1612
+ "epoch": 0.13,
1613
+ "learning_rate": 1.979566022454337e-05,
1614
+ "loss": 1.4379,
1615
+ "step": 265
1616
+ },
1617
+ {
1618
+ "epoch": 0.13,
1619
+ "learning_rate": 1.9794059951571848e-05,
1620
+ "loss": 1.386,
1621
+ "step": 266
1622
+ },
1623
+ {
1624
+ "epoch": 0.13,
1625
+ "learning_rate": 1.97924535019941e-05,
1626
+ "loss": 1.2546,
1627
+ "step": 267
1628
+ },
1629
+ {
1630
+ "epoch": 0.14,
1631
+ "learning_rate": 1.979084087682323e-05,
1632
+ "loss": 1.2028,
1633
+ "step": 268
1634
+ },
1635
+ {
1636
+ "epoch": 0.14,
1637
+ "learning_rate": 1.978922207707624e-05,
1638
+ "loss": 1.1725,
1639
+ "step": 269
1640
+ },
1641
+ {
1642
+ "epoch": 0.14,
1643
+ "learning_rate": 1.978759710377402e-05,
1644
+ "loss": 1.6772,
1645
+ "step": 270
1646
+ },
1647
+ {
1648
+ "epoch": 0.14,
1649
+ "learning_rate": 1.9785965957941362e-05,
1650
+ "loss": 1.555,
1651
+ "step": 271
1652
+ },
1653
+ {
1654
+ "epoch": 0.14,
1655
+ "learning_rate": 1.978432864060694e-05,
1656
+ "loss": 1.6195,
1657
+ "step": 272
1658
+ },
1659
+ {
1660
+ "epoch": 0.14,
1661
+ "learning_rate": 1.9782685152803326e-05,
1662
+ "loss": 1.4591,
1663
+ "step": 273
1664
+ },
1665
+ {
1666
+ "epoch": 0.14,
1667
+ "learning_rate": 1.978103549556698e-05,
1668
+ "loss": 1.2727,
1669
+ "step": 274
1670
+ },
1671
+ {
1672
+ "epoch": 0.14,
1673
+ "learning_rate": 1.9779379669938265e-05,
1674
+ "loss": 1.3214,
1675
+ "step": 275
1676
+ },
1677
+ {
1678
+ "epoch": 0.14,
1679
+ "learning_rate": 1.9777717676961412e-05,
1680
+ "loss": 1.6267,
1681
+ "step": 276
1682
+ },
1683
+ {
1684
+ "epoch": 0.14,
1685
+ "learning_rate": 1.977604951768456e-05,
1686
+ "loss": 1.1487,
1687
+ "step": 277
1688
+ },
1689
+ {
1690
+ "epoch": 0.14,
1691
+ "learning_rate": 1.977437519315973e-05,
1692
+ "loss": 1.8019,
1693
+ "step": 278
1694
+ },
1695
+ {
1696
+ "epoch": 0.14,
1697
+ "learning_rate": 1.9772694704442836e-05,
1698
+ "loss": 1.3772,
1699
+ "step": 279
1700
+ },
1701
+ {
1702
+ "epoch": 0.14,
1703
+ "learning_rate": 1.977100805259367e-05,
1704
+ "loss": 1.1348,
1705
+ "step": 280
1706
+ },
1707
+ {
1708
+ "epoch": 0.14,
1709
+ "learning_rate": 1.9769315238675916e-05,
1710
+ "loss": 1.209,
1711
+ "step": 281
1712
+ },
1713
+ {
1714
+ "epoch": 0.14,
1715
+ "learning_rate": 1.9767616263757146e-05,
1716
+ "loss": 1.4235,
1717
+ "step": 282
1718
+ },
1719
+ {
1720
+ "epoch": 0.14,
1721
+ "learning_rate": 1.9765911128908813e-05,
1722
+ "loss": 1.2202,
1723
+ "step": 283
1724
+ },
1725
+ {
1726
+ "epoch": 0.14,
1727
+ "learning_rate": 1.976419983520626e-05,
1728
+ "loss": 1.2418,
1729
+ "step": 284
1730
+ },
1731
+ {
1732
+ "epoch": 0.14,
1733
+ "learning_rate": 1.976248238372871e-05,
1734
+ "loss": 1.3901,
1735
+ "step": 285
1736
+ },
1737
+ {
1738
+ "epoch": 0.14,
1739
+ "learning_rate": 1.9760758775559275e-05,
1740
+ "loss": 1.1207,
1741
+ "step": 286
1742
+ },
1743
+ {
1744
+ "epoch": 0.14,
1745
+ "learning_rate": 1.9759029011784936e-05,
1746
+ "loss": 1.0332,
1747
+ "step": 287
1748
+ },
1749
+ {
1750
+ "epoch": 0.15,
1751
+ "learning_rate": 1.9757293093496573e-05,
1752
+ "loss": 1.4162,
1753
+ "step": 288
1754
+ },
1755
+ {
1756
+ "epoch": 0.15,
1757
+ "learning_rate": 1.9755551021788934e-05,
1758
+ "loss": 1.5068,
1759
+ "step": 289
1760
+ },
1761
+ {
1762
+ "epoch": 0.15,
1763
+ "learning_rate": 1.975380279776066e-05,
1764
+ "loss": 1.5863,
1765
+ "step": 290
1766
+ },
1767
+ {
1768
+ "epoch": 0.15,
1769
+ "learning_rate": 1.9752048422514262e-05,
1770
+ "loss": 1.4527,
1771
+ "step": 291
1772
+ },
1773
+ {
1774
+ "epoch": 0.15,
1775
+ "learning_rate": 1.9750287897156136e-05,
1776
+ "loss": 1.2066,
1777
+ "step": 292
1778
+ },
1779
+ {
1780
+ "epoch": 0.15,
1781
+ "learning_rate": 1.974852122279655e-05,
1782
+ "loss": 1.2543,
1783
+ "step": 293
1784
+ },
1785
+ {
1786
+ "epoch": 0.15,
1787
+ "learning_rate": 1.9746748400549653e-05,
1788
+ "loss": 1.455,
1789
+ "step": 294
1790
+ },
1791
+ {
1792
+ "epoch": 0.15,
1793
+ "learning_rate": 1.9744969431533474e-05,
1794
+ "loss": 1.4658,
1795
+ "step": 295
1796
+ },
1797
+ {
1798
+ "epoch": 0.15,
1799
+ "learning_rate": 1.9743184316869924e-05,
1800
+ "loss": 1.2493,
1801
+ "step": 296
1802
+ },
1803
+ {
1804
+ "epoch": 0.15,
1805
+ "learning_rate": 1.974139305768477e-05,
1806
+ "loss": 1.4861,
1807
+ "step": 297
1808
+ },
1809
+ {
1810
+ "epoch": 0.15,
1811
+ "learning_rate": 1.9739595655107675e-05,
1812
+ "loss": 1.6473,
1813
+ "step": 298
1814
+ },
1815
+ {
1816
+ "epoch": 0.15,
1817
+ "learning_rate": 1.9737792110272167e-05,
1818
+ "loss": 1.4982,
1819
+ "step": 299
1820
+ },
1821
+ {
1822
+ "epoch": 0.15,
1823
+ "learning_rate": 1.9735982424315642e-05,
1824
+ "loss": 1.4031,
1825
+ "step": 300
1826
+ },
1827
+ {
1828
+ "epoch": 0.15,
1829
+ "learning_rate": 1.973416659837938e-05,
1830
+ "loss": 1.1998,
1831
+ "step": 301
1832
+ },
1833
+ {
1834
+ "epoch": 0.15,
1835
+ "learning_rate": 1.973234463360853e-05,
1836
+ "loss": 1.0635,
1837
+ "step": 302
1838
+ },
1839
+ {
1840
+ "epoch": 0.15,
1841
+ "learning_rate": 1.973051653115211e-05,
1842
+ "loss": 1.29,
1843
+ "step": 303
1844
+ },
1845
+ {
1846
+ "epoch": 0.15,
1847
+ "learning_rate": 1.9728682292163002e-05,
1848
+ "loss": 1.2678,
1849
+ "step": 304
1850
+ },
1851
+ {
1852
+ "epoch": 0.15,
1853
+ "learning_rate": 1.9726841917797977e-05,
1854
+ "loss": 1.3882,
1855
+ "step": 305
1856
+ },
1857
+ {
1858
+ "epoch": 0.15,
1859
+ "learning_rate": 1.9724995409217658e-05,
1860
+ "loss": 1.0476,
1861
+ "step": 306
1862
+ },
1863
+ {
1864
+ "epoch": 0.15,
1865
+ "learning_rate": 1.972314276758654e-05,
1866
+ "loss": 1.2119,
1867
+ "step": 307
1868
+ },
1869
+ {
1870
+ "epoch": 0.16,
1871
+ "learning_rate": 1.9721283994072995e-05,
1872
+ "loss": 1.7283,
1873
+ "step": 308
1874
+ },
1875
+ {
1876
+ "epoch": 0.16,
1877
+ "learning_rate": 1.971941908984925e-05,
1878
+ "loss": 1.6008,
1879
+ "step": 309
1880
+ },
1881
+ {
1882
+ "epoch": 0.16,
1883
+ "learning_rate": 1.97175480560914e-05,
1884
+ "loss": 1.3317,
1885
+ "step": 310
1886
+ },
1887
+ {
1888
+ "epoch": 0.16,
1889
+ "learning_rate": 1.9715670893979416e-05,
1890
+ "loss": 1.2612,
1891
+ "step": 311
1892
+ },
1893
+ {
1894
+ "epoch": 0.16,
1895
+ "learning_rate": 1.9713787604697125e-05,
1896
+ "loss": 1.4356,
1897
+ "step": 312
1898
+ },
1899
+ {
1900
+ "epoch": 0.16,
1901
+ "learning_rate": 1.9711898189432218e-05,
1902
+ "loss": 1.3431,
1903
+ "step": 313
1904
+ },
1905
+ {
1906
+ "epoch": 0.16,
1907
+ "learning_rate": 1.9710002649376255e-05,
1908
+ "loss": 0.8521,
1909
+ "step": 314
1910
+ },
1911
+ {
1912
+ "epoch": 0.16,
1913
+ "learning_rate": 1.9708100985724654e-05,
1914
+ "loss": 1.9041,
1915
+ "step": 315
1916
+ },
1917
+ {
1918
+ "epoch": 0.16,
1919
+ "learning_rate": 1.970619319967669e-05,
1920
+ "loss": 1.6982,
1921
+ "step": 316
1922
+ },
1923
+ {
1924
+ "epoch": 0.16,
1925
+ "learning_rate": 1.970427929243551e-05,
1926
+ "loss": 1.6813,
1927
+ "step": 317
1928
+ },
1929
+ {
1930
+ "epoch": 0.16,
1931
+ "learning_rate": 1.9702359265208114e-05,
1932
+ "loss": 1.5686,
1933
+ "step": 318
1934
+ },
1935
+ {
1936
+ "epoch": 0.16,
1937
+ "learning_rate": 1.9700433119205368e-05,
1938
+ "loss": 1.7669,
1939
+ "step": 319
1940
+ },
1941
+ {
1942
+ "epoch": 0.16,
1943
+ "learning_rate": 1.9698500855641988e-05,
1944
+ "loss": 0.9086,
1945
+ "step": 320
1946
+ },
1947
+ {
1948
+ "epoch": 0.16,
1949
+ "learning_rate": 1.9696562475736556e-05,
1950
+ "loss": 1.4198,
1951
+ "step": 321
1952
+ },
1953
+ {
1954
+ "epoch": 0.16,
1955
+ "learning_rate": 1.9694617980711503e-05,
1956
+ "loss": 1.8693,
1957
+ "step": 322
1958
+ },
1959
+ {
1960
+ "epoch": 0.16,
1961
+ "learning_rate": 1.9692667371793127e-05,
1962
+ "loss": 0.7734,
1963
+ "step": 323
1964
+ },
1965
+ {
1966
+ "epoch": 0.16,
1967
+ "learning_rate": 1.9690710650211572e-05,
1968
+ "loss": 1.1205,
1969
+ "step": 324
1970
+ },
1971
+ {
1972
+ "epoch": 0.16,
1973
+ "learning_rate": 1.968874781720084e-05,
1974
+ "loss": 0.959,
1975
+ "step": 325
1976
+ },
1977
+ {
1978
+ "epoch": 0.16,
1979
+ "learning_rate": 1.9686778873998792e-05,
1980
+ "loss": 1.9894,
1981
+ "step": 326
1982
+ },
1983
+ {
1984
+ "epoch": 0.16,
1985
+ "learning_rate": 1.9684803821847137e-05,
1986
+ "loss": 1.6784,
1987
+ "step": 327
1988
+ },
1989
+ {
1990
+ "epoch": 0.17,
1991
+ "learning_rate": 1.9682822661991435e-05,
1992
+ "loss": 1.4841,
1993
+ "step": 328
1994
+ },
1995
+ {
1996
+ "epoch": 0.17,
1997
+ "learning_rate": 1.968083539568111e-05,
1998
+ "loss": 1.7689,
1999
+ "step": 329
2000
+ },
2001
+ {
2002
+ "epoch": 0.17,
2003
+ "learning_rate": 1.9678842024169418e-05,
2004
+ "loss": 1.3004,
2005
+ "step": 330
2006
+ },
2007
+ {
2008
+ "epoch": 0.17,
2009
+ "learning_rate": 1.9676842548713475e-05,
2010
+ "loss": 1.5111,
2011
+ "step": 331
2012
+ },
2013
+ {
2014
+ "epoch": 0.17,
2015
+ "learning_rate": 1.9674836970574253e-05,
2016
+ "loss": 1.0877,
2017
+ "step": 332
2018
+ },
2019
+ {
2020
+ "epoch": 0.17,
2021
+ "learning_rate": 1.9672825291016564e-05,
2022
+ "loss": 1.3979,
2023
+ "step": 333
2024
+ },
2025
+ {
2026
+ "epoch": 0.17,
2027
+ "learning_rate": 1.967080751130907e-05,
2028
+ "loss": 1.5652,
2029
+ "step": 334
2030
+ },
2031
+ {
2032
+ "epoch": 0.17,
2033
+ "learning_rate": 1.9668783632724278e-05,
2034
+ "loss": 1.2373,
2035
+ "step": 335
2036
+ },
2037
+ {
2038
+ "epoch": 0.17,
2039
+ "learning_rate": 1.9666753656538545e-05,
2040
+ "loss": 1.5039,
2041
+ "step": 336
2042
+ },
2043
+ {
2044
+ "epoch": 0.17,
2045
+ "learning_rate": 1.9664717584032075e-05,
2046
+ "loss": 1.3572,
2047
+ "step": 337
2048
+ },
2049
+ {
2050
+ "epoch": 0.17,
2051
+ "learning_rate": 1.9662675416488908e-05,
2052
+ "loss": 1.3156,
2053
+ "step": 338
2054
+ },
2055
+ {
2056
+ "epoch": 0.17,
2057
+ "learning_rate": 1.9660627155196934e-05,
2058
+ "loss": 1.4775,
2059
+ "step": 339
2060
+ },
2061
+ {
2062
+ "epoch": 0.17,
2063
+ "learning_rate": 1.965857280144789e-05,
2064
+ "loss": 1.5048,
2065
+ "step": 340
2066
+ },
2067
+ {
2068
+ "epoch": 0.17,
2069
+ "learning_rate": 1.9656512356537343e-05,
2070
+ "loss": 1.0645,
2071
+ "step": 341
2072
+ },
2073
+ {
2074
+ "epoch": 0.17,
2075
+ "learning_rate": 1.9654445821764717e-05,
2076
+ "loss": 1.4329,
2077
+ "step": 342
2078
+ },
2079
+ {
2080
+ "epoch": 0.17,
2081
+ "learning_rate": 1.9652373198433265e-05,
2082
+ "loss": 1.3218,
2083
+ "step": 343
2084
+ },
2085
+ {
2086
+ "epoch": 0.17,
2087
+ "learning_rate": 1.965029448785008e-05,
2088
+ "loss": 1.6661,
2089
+ "step": 344
2090
+ },
2091
+ {
2092
+ "epoch": 0.17,
2093
+ "learning_rate": 1.9648209691326103e-05,
2094
+ "loss": 1.183,
2095
+ "step": 345
2096
+ },
2097
+ {
2098
+ "epoch": 0.17,
2099
+ "learning_rate": 1.96461188101761e-05,
2100
+ "loss": 1.2924,
2101
+ "step": 346
2102
+ },
2103
+ {
2104
+ "epoch": 0.17,
2105
+ "learning_rate": 1.964402184571869e-05,
2106
+ "loss": 1.0152,
2107
+ "step": 347
2108
+ },
2109
+ {
2110
+ "epoch": 0.18,
2111
+ "learning_rate": 1.9641918799276313e-05,
2112
+ "loss": 1.3248,
2113
+ "step": 348
2114
+ },
2115
+ {
2116
+ "epoch": 0.18,
2117
+ "learning_rate": 1.9639809672175253e-05,
2118
+ "loss": 1.2242,
2119
+ "step": 349
2120
+ },
2121
+ {
2122
+ "epoch": 0.18,
2123
+ "learning_rate": 1.963769446574563e-05,
2124
+ "loss": 1.2416,
2125
+ "step": 350
2126
+ },
2127
+ {
2128
+ "epoch": 0.18,
2129
+ "learning_rate": 1.9635573181321394e-05,
2130
+ "loss": 1.4711,
2131
+ "step": 351
2132
+ },
2133
+ {
2134
+ "epoch": 0.18,
2135
+ "learning_rate": 1.9633445820240323e-05,
2136
+ "loss": 1.454,
2137
+ "step": 352
2138
+ },
2139
+ {
2140
+ "epoch": 0.18,
2141
+ "learning_rate": 1.963131238384404e-05,
2142
+ "loss": 1.355,
2143
+ "step": 353
2144
+ },
2145
+ {
2146
+ "epoch": 0.18,
2147
+ "learning_rate": 1.9629172873477995e-05,
2148
+ "loss": 1.3991,
2149
+ "step": 354
2150
+ },
2151
+ {
2152
+ "epoch": 0.18,
2153
+ "learning_rate": 1.962702729049146e-05,
2154
+ "loss": 1.3905,
2155
+ "step": 355
2156
+ },
2157
+ {
2158
+ "epoch": 0.18,
2159
+ "learning_rate": 1.9624875636237547e-05,
2160
+ "loss": 1.5024,
2161
+ "step": 356
2162
+ },
2163
+ {
2164
+ "epoch": 0.18,
2165
+ "learning_rate": 1.9622717912073193e-05,
2166
+ "loss": 1.1932,
2167
+ "step": 357
2168
+ },
2169
+ {
2170
+ "epoch": 0.18,
2171
+ "learning_rate": 1.962055411935916e-05,
2172
+ "loss": 1.4808,
2173
+ "step": 358
2174
+ },
2175
+ {
2176
+ "epoch": 0.18,
2177
+ "learning_rate": 1.961838425946004e-05,
2178
+ "loss": 1.5079,
2179
+ "step": 359
2180
+ },
2181
+ {
2182
+ "epoch": 0.18,
2183
+ "learning_rate": 1.9616208333744255e-05,
2184
+ "loss": 1.1668,
2185
+ "step": 360
2186
+ },
2187
+ {
2188
+ "epoch": 0.18,
2189
+ "learning_rate": 1.9614026343584048e-05,
2190
+ "loss": 0.9482,
2191
+ "step": 361
2192
+ },
2193
+ {
2194
+ "epoch": 0.18,
2195
+ "learning_rate": 1.9611838290355483e-05,
2196
+ "loss": 1.5103,
2197
+ "step": 362
2198
+ },
2199
+ {
2200
+ "epoch": 0.18,
2201
+ "learning_rate": 1.9609644175438457e-05,
2202
+ "loss": 1.4825,
2203
+ "step": 363
2204
+ },
2205
+ {
2206
+ "epoch": 0.18,
2207
+ "learning_rate": 1.9607444000216676e-05,
2208
+ "loss": 1.0542,
2209
+ "step": 364
2210
+ },
2211
+ {
2212
+ "epoch": 0.18,
2213
+ "learning_rate": 1.9605237766077686e-05,
2214
+ "loss": 1.3711,
2215
+ "step": 365
2216
+ },
2217
+ {
2218
+ "epoch": 0.18,
2219
+ "learning_rate": 1.9603025474412844e-05,
2220
+ "loss": 1.8036,
2221
+ "step": 366
2222
+ },
2223
+ {
2224
+ "epoch": 0.19,
2225
+ "learning_rate": 1.960080712661732e-05,
2226
+ "loss": 1.2591,
2227
+ "step": 367
2228
+ },
2229
+ {
2230
+ "epoch": 0.19,
2231
+ "learning_rate": 1.959858272409012e-05,
2232
+ "loss": 1.5749,
2233
+ "step": 368
2234
+ },
2235
+ {
2236
+ "epoch": 0.19,
2237
+ "learning_rate": 1.9596352268234053e-05,
2238
+ "loss": 1.4592,
2239
+ "step": 369
2240
+ },
2241
+ {
2242
+ "epoch": 0.19,
2243
+ "learning_rate": 1.9594115760455755e-05,
2244
+ "loss": 0.8912,
2245
+ "step": 370
2246
+ },
2247
+ {
2248
+ "epoch": 0.19,
2249
+ "learning_rate": 1.9591873202165678e-05,
2250
+ "loss": 0.9196,
2251
+ "step": 371
2252
+ },
2253
+ {
2254
+ "epoch": 0.19,
2255
+ "learning_rate": 1.9589624594778077e-05,
2256
+ "loss": 1.4079,
2257
+ "step": 372
2258
+ },
2259
+ {
2260
+ "epoch": 0.19,
2261
+ "learning_rate": 1.9587369939711044e-05,
2262
+ "loss": 1.3132,
2263
+ "step": 373
2264
+ },
2265
+ {
2266
+ "epoch": 0.19,
2267
+ "learning_rate": 1.958510923838647e-05,
2268
+ "loss": 0.6786,
2269
+ "step": 374
2270
+ },
2271
+ {
2272
+ "epoch": 0.19,
2273
+ "learning_rate": 1.958284249223006e-05,
2274
+ "loss": 1.4426,
2275
+ "step": 375
2276
+ },
2277
+ {
2278
+ "epoch": 0.19,
2279
+ "learning_rate": 1.9580569702671332e-05,
2280
+ "loss": 1.1317,
2281
+ "step": 376
2282
+ },
2283
+ {
2284
+ "epoch": 0.19,
2285
+ "learning_rate": 1.957829087114362e-05,
2286
+ "loss": 1.4542,
2287
+ "step": 377
2288
+ },
2289
+ {
2290
+ "epoch": 0.19,
2291
+ "learning_rate": 1.957600599908406e-05,
2292
+ "loss": 0.807,
2293
+ "step": 378
2294
+ },
2295
+ {
2296
+ "epoch": 0.19,
2297
+ "learning_rate": 1.957371508793361e-05,
2298
+ "loss": 1.5726,
2299
+ "step": 379
2300
+ },
2301
+ {
2302
+ "epoch": 0.19,
2303
+ "learning_rate": 1.9571418139137023e-05,
2304
+ "loss": 1.4531,
2305
+ "step": 380
2306
+ },
2307
+ {
2308
+ "epoch": 0.19,
2309
+ "learning_rate": 1.9569115154142873e-05,
2310
+ "loss": 1.4213,
2311
+ "step": 381
2312
+ },
2313
+ {
2314
+ "epoch": 0.19,
2315
+ "learning_rate": 1.9566806134403526e-05,
2316
+ "loss": 1.3222,
2317
+ "step": 382
2318
+ },
2319
+ {
2320
+ "epoch": 0.19,
2321
+ "learning_rate": 1.9564491081375157e-05,
2322
+ "loss": 0.9039,
2323
+ "step": 383
2324
+ },
2325
+ {
2326
+ "epoch": 0.19,
2327
+ "learning_rate": 1.956216999651776e-05,
2328
+ "loss": 1.507,
2329
+ "step": 384
2330
+ },
2331
+ {
2332
+ "epoch": 0.19,
2333
+ "learning_rate": 1.9559842881295122e-05,
2334
+ "loss": 1.4292,
2335
+ "step": 385
2336
+ },
2337
+ {
2338
+ "epoch": 0.19,
2339
+ "learning_rate": 1.955750973717483e-05,
2340
+ "loss": 1.2868,
2341
+ "step": 386
2342
+ },
2343
+ {
2344
+ "epoch": 0.2,
2345
+ "learning_rate": 1.955517056562828e-05,
2346
+ "loss": 1.5842,
2347
+ "step": 387
2348
+ },
2349
+ {
2350
+ "epoch": 0.2,
2351
+ "learning_rate": 1.955282536813066e-05,
2352
+ "loss": 1.615,
2353
+ "step": 388
2354
+ },
2355
+ {
2356
+ "epoch": 0.2,
2357
+ "learning_rate": 1.955047414616097e-05,
2358
+ "loss": 1.3707,
2359
+ "step": 389
2360
+ },
2361
+ {
2362
+ "epoch": 0.2,
2363
+ "learning_rate": 1.9548116901202006e-05,
2364
+ "loss": 1.4077,
2365
+ "step": 390
2366
+ },
2367
+ {
2368
+ "epoch": 0.2,
2369
+ "learning_rate": 1.9545753634740358e-05,
2370
+ "loss": 1.4326,
2371
+ "step": 391
2372
+ },
2373
+ {
2374
+ "epoch": 0.2,
2375
+ "learning_rate": 1.9543384348266415e-05,
2376
+ "loss": 1.3821,
2377
+ "step": 392
2378
+ },
2379
+ {
2380
+ "epoch": 0.2,
2381
+ "learning_rate": 1.954100904327436e-05,
2382
+ "loss": 1.4803,
2383
+ "step": 393
2384
+ },
2385
+ {
2386
+ "epoch": 0.2,
2387
+ "learning_rate": 1.953862772126218e-05,
2388
+ "loss": 1.5412,
2389
+ "step": 394
2390
+ },
2391
+ {
2392
+ "epoch": 0.2,
2393
+ "learning_rate": 1.953624038373165e-05,
2394
+ "loss": 1.7189,
2395
+ "step": 395
2396
+ },
2397
+ {
2398
+ "epoch": 0.2,
2399
+ "learning_rate": 1.9533847032188337e-05,
2400
+ "loss": 1.1109,
2401
+ "step": 396
2402
+ },
2403
+ {
2404
+ "epoch": 0.2,
2405
+ "learning_rate": 1.953144766814161e-05,
2406
+ "loss": 1.237,
2407
+ "step": 397
2408
+ },
2409
+ {
2410
+ "epoch": 0.2,
2411
+ "learning_rate": 1.952904229310462e-05,
2412
+ "loss": 1.2492,
2413
+ "step": 398
2414
+ },
2415
+ {
2416
+ "epoch": 0.2,
2417
+ "learning_rate": 1.952663090859431e-05,
2418
+ "loss": 1.3605,
2419
+ "step": 399
2420
+ },
2421
+ {
2422
+ "epoch": 0.2,
2423
+ "learning_rate": 1.952421351613142e-05,
2424
+ "loss": 1.4423,
2425
+ "step": 400
2426
+ },
2427
+ {
2428
+ "epoch": 0.2,
2429
+ "learning_rate": 1.9521790117240472e-05,
2430
+ "loss": 1.3342,
2431
+ "step": 401
2432
+ },
2433
+ {
2434
+ "epoch": 0.2,
2435
+ "learning_rate": 1.9519360713449775e-05,
2436
+ "loss": 1.7274,
2437
+ "step": 402
2438
+ },
2439
+ {
2440
+ "epoch": 0.2,
2441
+ "learning_rate": 1.9516925306291435e-05,
2442
+ "loss": 1.6019,
2443
+ "step": 403
2444
+ },
2445
+ {
2446
+ "epoch": 0.2,
2447
+ "learning_rate": 1.951448389730133e-05,
2448
+ "loss": 1.1267,
2449
+ "step": 404
2450
+ },
2451
+ {
2452
+ "epoch": 0.2,
2453
+ "learning_rate": 1.9512036488019138e-05,
2454
+ "loss": 1.1338,
2455
+ "step": 405
2456
+ },
2457
+ {
2458
+ "epoch": 0.2,
2459
+ "learning_rate": 1.9509583079988307e-05,
2460
+ "loss": 1.6472,
2461
+ "step": 406
2462
+ },
2463
+ {
2464
+ "epoch": 0.21,
2465
+ "learning_rate": 1.9507123674756076e-05,
2466
+ "loss": 1.2389,
2467
+ "step": 407
2468
+ },
2469
+ {
2470
+ "epoch": 0.21,
2471
+ "learning_rate": 1.9504658273873465e-05,
2472
+ "loss": 1.5887,
2473
+ "step": 408
2474
+ },
2475
+ {
2476
+ "epoch": 0.21,
2477
+ "learning_rate": 1.9502186878895273e-05,
2478
+ "loss": 1.0987,
2479
+ "step": 409
2480
+ },
2481
+ {
2482
+ "epoch": 0.21,
2483
+ "learning_rate": 1.9499709491380083e-05,
2484
+ "loss": 1.384,
2485
+ "step": 410
2486
+ },
2487
+ {
2488
+ "epoch": 0.21,
2489
+ "learning_rate": 1.9497226112890252e-05,
2490
+ "loss": 1.7325,
2491
+ "step": 411
2492
+ },
2493
+ {
2494
+ "epoch": 0.21,
2495
+ "learning_rate": 1.9494736744991925e-05,
2496
+ "loss": 1.4435,
2497
+ "step": 412
2498
+ },
2499
+ {
2500
+ "epoch": 0.21,
2501
+ "learning_rate": 1.9492241389255006e-05,
2502
+ "loss": 1.9634,
2503
+ "step": 413
2504
+ },
2505
+ {
2506
+ "epoch": 0.21,
2507
+ "learning_rate": 1.9489740047253197e-05,
2508
+ "loss": 1.5567,
2509
+ "step": 414
2510
+ },
2511
+ {
2512
+ "epoch": 0.21,
2513
+ "learning_rate": 1.9487232720563962e-05,
2514
+ "loss": 1.3805,
2515
+ "step": 415
2516
+ },
2517
+ {
2518
+ "epoch": 0.21,
2519
+ "learning_rate": 1.948471941076854e-05,
2520
+ "loss": 1.325,
2521
+ "step": 416
2522
+ },
2523
+ {
2524
+ "epoch": 0.21,
2525
+ "learning_rate": 1.9482200119451945e-05,
2526
+ "loss": 1.3569,
2527
+ "step": 417
2528
+ },
2529
+ {
2530
+ "epoch": 0.21,
2531
+ "learning_rate": 1.947967484820297e-05,
2532
+ "loss": 1.1947,
2533
+ "step": 418
2534
+ },
2535
+ {
2536
+ "epoch": 0.21,
2537
+ "learning_rate": 1.947714359861416e-05,
2538
+ "loss": 1.231,
2539
+ "step": 419
2540
+ },
2541
+ {
2542
+ "epoch": 0.21,
2543
+ "learning_rate": 1.9474606372281854e-05,
2544
+ "loss": 1.1062,
2545
+ "step": 420
2546
+ },
2547
+ {
2548
+ "epoch": 0.21,
2549
+ "learning_rate": 1.9472063170806144e-05,
2550
+ "loss": 1.8761,
2551
+ "step": 421
2552
+ },
2553
+ {
2554
+ "epoch": 0.21,
2555
+ "learning_rate": 1.94695139957909e-05,
2556
+ "loss": 1.3697,
2557
+ "step": 422
2558
+ },
2559
+ {
2560
+ "epoch": 0.21,
2561
+ "learning_rate": 1.9466958848843748e-05,
2562
+ "loss": 1.0142,
2563
+ "step": 423
2564
+ },
2565
+ {
2566
+ "epoch": 0.21,
2567
+ "learning_rate": 1.9464397731576093e-05,
2568
+ "loss": 1.0189,
2569
+ "step": 424
2570
+ },
2571
+ {
2572
+ "epoch": 0.21,
2573
+ "learning_rate": 1.94618306456031e-05,
2574
+ "loss": 1.7268,
2575
+ "step": 425
2576
+ },
2577
+ {
2578
+ "epoch": 0.21,
2579
+ "learning_rate": 1.9459257592543688e-05,
2580
+ "loss": 1.0269,
2581
+ "step": 426
2582
+ },
2583
+ {
2584
+ "epoch": 0.22,
2585
+ "learning_rate": 1.9456678574020557e-05,
2586
+ "loss": 1.2833,
2587
+ "step": 427
2588
+ },
2589
+ {
2590
+ "epoch": 0.22,
2591
+ "learning_rate": 1.9454093591660155e-05,
2592
+ "loss": 1.1967,
2593
+ "step": 428
2594
+ },
2595
+ {
2596
+ "epoch": 0.22,
2597
+ "learning_rate": 1.94515026470927e-05,
2598
+ "loss": 1.5793,
2599
+ "step": 429
2600
+ },
2601
+ {
2602
+ "epoch": 0.22,
2603
+ "learning_rate": 1.9448905741952167e-05,
2604
+ "loss": 1.4184,
2605
+ "step": 430
2606
+ },
2607
+ {
2608
+ "epoch": 0.22,
2609
+ "learning_rate": 1.944630287787629e-05,
2610
+ "loss": 1.2217,
2611
+ "step": 431
2612
+ },
2613
+ {
2614
+ "epoch": 0.22,
2615
+ "learning_rate": 1.9443694056506556e-05,
2616
+ "loss": 1.222,
2617
+ "step": 432
2618
+ },
2619
+ {
2620
+ "epoch": 0.22,
2621
+ "learning_rate": 1.9441079279488213e-05,
2622
+ "loss": 1.2332,
2623
+ "step": 433
2624
+ },
2625
+ {
2626
+ "epoch": 0.22,
2627
+ "learning_rate": 1.9438458548470268e-05,
2628
+ "loss": 1.7458,
2629
+ "step": 434
2630
+ },
2631
+ {
2632
+ "epoch": 0.22,
2633
+ "learning_rate": 1.9435831865105482e-05,
2634
+ "loss": 1.3248,
2635
+ "step": 435
2636
+ },
2637
+ {
2638
+ "epoch": 0.22,
2639
+ "learning_rate": 1.9433199231050367e-05,
2640
+ "loss": 1.9621,
2641
+ "step": 436
2642
+ },
2643
+ {
2644
+ "epoch": 0.22,
2645
+ "learning_rate": 1.9430560647965192e-05,
2646
+ "loss": 0.8943,
2647
+ "step": 437
2648
+ },
2649
+ {
2650
+ "epoch": 0.22,
2651
+ "learning_rate": 1.942791611751397e-05,
2652
+ "loss": 0.6546,
2653
+ "step": 438
2654
+ },
2655
+ {
2656
+ "epoch": 0.22,
2657
+ "learning_rate": 1.9425265641364467e-05,
2658
+ "loss": 1.4626,
2659
+ "step": 439
2660
+ },
2661
+ {
2662
+ "epoch": 0.22,
2663
+ "learning_rate": 1.9422609221188208e-05,
2664
+ "loss": 1.3289,
2665
+ "step": 440
2666
+ },
2667
+ {
2668
+ "epoch": 0.22,
2669
+ "learning_rate": 1.9419946858660452e-05,
2670
+ "loss": 0.8965,
2671
+ "step": 441
2672
+ },
2673
+ {
2674
+ "epoch": 0.22,
2675
+ "learning_rate": 1.9417278555460223e-05,
2676
+ "loss": 1.225,
2677
+ "step": 442
2678
+ },
2679
+ {
2680
+ "epoch": 0.22,
2681
+ "learning_rate": 1.941460431327027e-05,
2682
+ "loss": 1.713,
2683
+ "step": 443
2684
+ },
2685
+ {
2686
+ "epoch": 0.22,
2687
+ "learning_rate": 1.941192413377711e-05,
2688
+ "loss": 1.0535,
2689
+ "step": 444
2690
+ },
2691
+ {
2692
+ "epoch": 0.22,
2693
+ "learning_rate": 1.9409238018670986e-05,
2694
+ "loss": 1.4671,
2695
+ "step": 445
2696
+ },
2697
+ {
2698
+ "epoch": 0.22,
2699
+ "learning_rate": 1.9406545969645894e-05,
2700
+ "loss": 1.5399,
2701
+ "step": 446
2702
+ },
2703
+ {
2704
+ "epoch": 0.23,
2705
+ "learning_rate": 1.940384798839957e-05,
2706
+ "loss": 1.3484,
2707
+ "step": 447
2708
+ },
2709
+ {
2710
+ "epoch": 0.23,
2711
+ "learning_rate": 1.940114407663349e-05,
2712
+ "loss": 1.6319,
2713
+ "step": 448
2714
+ },
2715
+ {
2716
+ "epoch": 0.23,
2717
+ "learning_rate": 1.9398434236052873e-05,
2718
+ "loss": 1.7901,
2719
+ "step": 449
2720
+ },
2721
+ {
2722
+ "epoch": 0.23,
2723
+ "learning_rate": 1.9395718468366672e-05,
2724
+ "loss": 1.4023,
2725
+ "step": 450
2726
+ },
2727
+ {
2728
+ "epoch": 0.23,
2729
+ "learning_rate": 1.9392996775287588e-05,
2730
+ "loss": 1.1306,
2731
+ "step": 451
2732
+ },
2733
+ {
2734
+ "epoch": 0.23,
2735
+ "learning_rate": 1.9390269158532043e-05,
2736
+ "loss": 1.648,
2737
+ "step": 452
2738
+ },
2739
+ {
2740
+ "epoch": 0.23,
2741
+ "learning_rate": 1.9387535619820207e-05,
2742
+ "loss": 1.5907,
2743
+ "step": 453
2744
+ },
2745
+ {
2746
+ "epoch": 0.23,
2747
+ "learning_rate": 1.9384796160875982e-05,
2748
+ "loss": 1.2352,
2749
+ "step": 454
2750
+ },
2751
+ {
2752
+ "epoch": 0.23,
2753
+ "learning_rate": 1.9382050783427e-05,
2754
+ "loss": 1.6986,
2755
+ "step": 455
2756
+ },
2757
+ {
2758
+ "epoch": 0.23,
2759
+ "learning_rate": 1.9379299489204634e-05,
2760
+ "loss": 1.4436,
2761
+ "step": 456
2762
+ },
2763
+ {
2764
+ "epoch": 0.23,
2765
+ "learning_rate": 1.937654227994398e-05,
2766
+ "loss": 1.8155,
2767
+ "step": 457
2768
+ },
2769
+ {
2770
+ "epoch": 0.23,
2771
+ "learning_rate": 1.937377915738386e-05,
2772
+ "loss": 1.4464,
2773
+ "step": 458
2774
+ },
2775
+ {
2776
+ "epoch": 0.23,
2777
+ "learning_rate": 1.937101012326685e-05,
2778
+ "loss": 1.5623,
2779
+ "step": 459
2780
+ },
2781
+ {
2782
+ "epoch": 0.23,
2783
+ "learning_rate": 1.9368235179339217e-05,
2784
+ "loss": 1.6515,
2785
+ "step": 460
2786
+ },
2787
+ {
2788
+ "epoch": 0.23,
2789
+ "learning_rate": 1.9365454327350984e-05,
2790
+ "loss": 1.3808,
2791
+ "step": 461
2792
+ },
2793
+ {
2794
+ "epoch": 0.23,
2795
+ "learning_rate": 1.936266756905589e-05,
2796
+ "loss": 1.708,
2797
+ "step": 462
2798
+ },
2799
+ {
2800
+ "epoch": 0.23,
2801
+ "learning_rate": 1.93598749062114e-05,
2802
+ "loss": 1.3696,
2803
+ "step": 463
2804
+ },
2805
+ {
2806
+ "epoch": 0.23,
2807
+ "learning_rate": 1.9357076340578696e-05,
2808
+ "loss": 1.4497,
2809
+ "step": 464
2810
+ },
2811
+ {
2812
+ "epoch": 0.23,
2813
+ "learning_rate": 1.9354271873922692e-05,
2814
+ "loss": 1.2003,
2815
+ "step": 465
2816
+ },
2817
+ {
2818
+ "epoch": 0.23,
2819
+ "learning_rate": 1.935146150801202e-05,
2820
+ "loss": 1.182,
2821
+ "step": 466
2822
+ },
2823
+ {
2824
+ "epoch": 0.24,
2825
+ "learning_rate": 1.9348645244619035e-05,
2826
+ "loss": 1.9314,
2827
+ "step": 467
2828
+ },
2829
+ {
2830
+ "epoch": 0.24,
2831
+ "learning_rate": 1.9345823085519804e-05,
2832
+ "loss": 1.5496,
2833
+ "step": 468
2834
+ },
2835
+ {
2836
+ "epoch": 0.24,
2837
+ "learning_rate": 1.9342995032494116e-05,
2838
+ "loss": 1.0179,
2839
+ "step": 469
2840
+ },
2841
+ {
2842
+ "epoch": 0.24,
2843
+ "learning_rate": 1.9340161087325483e-05,
2844
+ "loss": 1.3892,
2845
+ "step": 470
2846
+ },
2847
+ {
2848
+ "epoch": 0.24,
2849
+ "learning_rate": 1.9337321251801123e-05,
2850
+ "loss": 1.0485,
2851
+ "step": 471
2852
+ },
2853
+ {
2854
+ "epoch": 0.24,
2855
+ "learning_rate": 1.9334475527711973e-05,
2856
+ "loss": 1.786,
2857
+ "step": 472
2858
+ },
2859
+ {
2860
+ "epoch": 0.24,
2861
+ "learning_rate": 1.9331623916852683e-05,
2862
+ "loss": 1.3026,
2863
+ "step": 473
2864
+ },
2865
+ {
2866
+ "epoch": 0.24,
2867
+ "learning_rate": 1.932876642102162e-05,
2868
+ "loss": 1.2246,
2869
+ "step": 474
2870
+ },
2871
+ {
2872
+ "epoch": 0.24,
2873
+ "learning_rate": 1.9325903042020856e-05,
2874
+ "loss": 1.7167,
2875
+ "step": 475
2876
+ },
2877
+ {
2878
+ "epoch": 0.24,
2879
+ "learning_rate": 1.9323033781656178e-05,
2880
+ "loss": 1.5324,
2881
+ "step": 476
2882
+ },
2883
+ {
2884
+ "epoch": 0.24,
2885
+ "learning_rate": 1.9320158641737077e-05,
2886
+ "loss": 1.51,
2887
+ "step": 477
2888
+ },
2889
+ {
2890
+ "epoch": 0.24,
2891
+ "learning_rate": 1.9317277624076758e-05,
2892
+ "loss": 1.3634,
2893
+ "step": 478
2894
+ },
2895
+ {
2896
+ "epoch": 0.24,
2897
+ "learning_rate": 1.931439073049213e-05,
2898
+ "loss": 1.2313,
2899
+ "step": 479
2900
+ },
2901
+ {
2902
+ "epoch": 0.24,
2903
+ "learning_rate": 1.93114979628038e-05,
2904
+ "loss": 1.624,
2905
+ "step": 480
2906
+ },
2907
+ {
2908
+ "epoch": 0.24,
2909
+ "learning_rate": 1.9308599322836092e-05,
2910
+ "loss": 1.152,
2911
+ "step": 481
2912
+ },
2913
+ {
2914
+ "epoch": 0.24,
2915
+ "learning_rate": 1.930569481241703e-05,
2916
+ "loss": 1.2635,
2917
+ "step": 482
2918
+ },
2919
+ {
2920
+ "epoch": 0.24,
2921
+ "learning_rate": 1.9302784433378333e-05,
2922
+ "loss": 1.921,
2923
+ "step": 483
2924
+ },
2925
+ {
2926
+ "epoch": 0.24,
2927
+ "learning_rate": 1.929986818755543e-05,
2928
+ "loss": 1.2884,
2929
+ "step": 484
2930
+ },
2931
+ {
2932
+ "epoch": 0.24,
2933
+ "learning_rate": 1.9296946076787447e-05,
2934
+ "loss": 1.2914,
2935
+ "step": 485
2936
+ },
2937
+ {
2938
+ "epoch": 0.25,
2939
+ "learning_rate": 1.9294018102917208e-05,
2940
+ "loss": 1.2168,
2941
+ "step": 486
2942
+ },
2943
+ {
2944
+ "epoch": 0.25,
2945
+ "learning_rate": 1.929108426779123e-05,
2946
+ "loss": 1.7837,
2947
+ "step": 487
2948
+ },
2949
+ {
2950
+ "epoch": 0.25,
2951
+ "learning_rate": 1.9288144573259735e-05,
2952
+ "loss": 1.3335,
2953
+ "step": 488
2954
+ },
2955
+ {
2956
+ "epoch": 0.25,
2957
+ "learning_rate": 1.9285199021176634e-05,
2958
+ "loss": 1.2004,
2959
+ "step": 489
2960
+ },
2961
+ {
2962
+ "epoch": 0.25,
2963
+ "learning_rate": 1.9282247613399537e-05,
2964
+ "loss": 1.3216,
2965
+ "step": 490
2966
+ },
2967
+ {
2968
+ "epoch": 0.25,
2969
+ "learning_rate": 1.9279290351789737e-05,
2970
+ "loss": 1.7597,
2971
+ "step": 491
2972
+ },
2973
+ {
2974
+ "epoch": 0.25,
2975
+ "learning_rate": 1.9276327238212232e-05,
2976
+ "loss": 1.3228,
2977
+ "step": 492
2978
+ },
2979
+ {
2980
+ "epoch": 0.25,
2981
+ "learning_rate": 1.9273358274535703e-05,
2982
+ "loss": 1.6335,
2983
+ "step": 493
2984
+ },
2985
+ {
2986
+ "epoch": 0.25,
2987
+ "learning_rate": 1.9270383462632524e-05,
2988
+ "loss": 1.4952,
2989
+ "step": 494
2990
+ },
2991
+ {
2992
+ "epoch": 0.25,
2993
+ "learning_rate": 1.926740280437875e-05,
2994
+ "loss": 1.8452,
2995
+ "step": 495
2996
+ },
2997
+ {
2998
+ "epoch": 0.25,
2999
+ "learning_rate": 1.926441630165413e-05,
3000
+ "loss": 1.1917,
3001
+ "step": 496
3002
+ },
3003
+ {
3004
+ "epoch": 0.25,
3005
+ "eval_loss": 1.436846375465393,
3006
+ "eval_runtime": 99.6318,
3007
+ "eval_samples_per_second": 1.164,
3008
+ "eval_steps_per_second": 1.164,
3009
+ "step": 496
3010
+ }
3011
+ ],
3012
+ "logging_steps": 1,
3013
+ "max_steps": 3966,
3014
+ "num_input_tokens_seen": 0,
3015
+ "num_train_epochs": 2,
3016
+ "save_steps": 496,
3017
+ "total_flos": 8.76993307434025e+16,
3018
+ "train_batch_size": 1,
3019
+ "trial_name": null,
3020
+ "trial_params": null
3021
+ }
checkpoint-496/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8358787deffea50a57e590c449c424422609cef40af4a0de5a5b2512c3bc98e
3
+ size 5304
checkpoint-992/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Chat-Error/Mistral-Kimiko-CSFT
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
checkpoint-992/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Chat-Error/Mistral-Kimiko-CSFT",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 64,
13
+ "lora_dropout": 0.0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "up_proj",
23
+ "q_proj",
24
+ "v_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "o_proj",
28
+ "down_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
checkpoint-992/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b88b9637e3358f5b8ff473600cce90ebdf16f5d070afb62b1f86c6e44327e30e
3
+ size 335604696
checkpoint-992/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4abd00b5601aeee65035edf8ab1a8b0c75a90406c5963728872944d295dc861f
3
+ size 168625172
checkpoint-992/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d245e05e72192c132e0f2edb6fdcae0c578c890f0fe912f17ec7b0bba2d38cc3
3
+ size 14244
checkpoint-992/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2929294335bfa51c72282b3bac32d7befabaac2c7f9a9cadeba03e0dd0062741
3
+ size 1064
checkpoint-992/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-992/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8358787deffea50a57e590c449c424422609cef40af4a0de5a5b2512c3bc98e
3
+ size 5304
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "Chat-Error/IWasDointCrystalMethOnTheKitchenButThenMomWalkedIn-NeuralHermesStripedCapybara-Mistral-11B-SLERP",
3
  "architectures": [
4
  "MistralForCausalLM"
5
  ],
@@ -16,17 +16,17 @@
16
  "num_hidden_layers": 32,
17
  "num_key_value_heads": 8,
18
  "quantization_config": {
19
- "_load_in_4bit": false,
20
- "_load_in_8bit": true,
21
- "bnb_4bit_compute_dtype": "float32",
22
- "bnb_4bit_quant_type": "fp4",
23
- "bnb_4bit_use_double_quant": false,
24
  "llm_int8_enable_fp32_cpu_offload": false,
25
  "llm_int8_has_fp16_weight": false,
26
  "llm_int8_skip_modules": null,
27
  "llm_int8_threshold": 6.0,
28
- "load_in_4bit": false,
29
- "load_in_8bit": true,
30
  "quant_method": "bitsandbytes"
31
  },
32
  "rms_norm_eps": 1e-05,
 
1
  {
2
+ "_name_or_path": "Chat-Error/Mistral-Kimiko-CSFT",
3
  "architectures": [
4
  "MistralForCausalLM"
5
  ],
 
16
  "num_hidden_layers": 32,
17
  "num_key_value_heads": 8,
18
  "quantization_config": {
19
+ "_load_in_4bit": true,
20
+ "_load_in_8bit": false,
21
+ "bnb_4bit_compute_dtype": "bfloat16",
22
+ "bnb_4bit_quant_type": "nf4",
23
+ "bnb_4bit_use_double_quant": true,
24
  "llm_int8_enable_fp32_cpu_offload": false,
25
  "llm_int8_has_fp16_weight": false,
26
  "llm_int8_skip_modules": null,
27
  "llm_int8_threshold": 6.0,
28
+ "load_in_4bit": true,
29
+ "load_in_8bit": false,
30
  "quant_method": "bitsandbytes"
31
  },
32
  "rms_norm_eps": 1e-05,
tmp-checkpoint-516/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Chat-Error/Mistral-Kimiko-CSFT
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2