cere-llama-3-8b-tr / README.md
oguzhandoganoglu's picture
Update README.md
1e68fe9 verified
|
raw
history blame
3.73 kB
---
license: llama3
language:
- tr
model-index:
- name: cere-llama-3-8b-tr
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge TR
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc
value: 44.03
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag TR
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc
value: 46.73
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU TR
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.11
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA TR
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: acc
name: accuracy
value: 48.21
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande TR
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 10
metrics:
- type: acc
value: 54.98
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k TR
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.78
name: accuracy
---
# CERE-LLMA-3-8b-TR
This model is an fine-tuned version of a Llama3 8b Large Language Model (LLM) for Turkish. It was trained on a high quality Turkish instruction sets created from various open-source and internal resources. Turkish Instruction dataset carefully annotated to carry out Turkish instructions in an accurate and organized manner.
## Model Details
- **Base Model**: LLMA 3 7B based LLM
- **Tokenizer Extension**: Specifically extended for Turkish
- **Training Dataset**: Cleaned Turkish raw data with 5 billion tokens, custom Turkish instruction sets
- **Training Method**: Initially with DORA, followed by fine-tuning with LORA
[Open LLM Turkish Leaderboard v0.2 Evaluation Results]
Metric Value
Avg.
AI2 Reasoning Challenge_tr
HellaSwag_tr
MMLU_tr
TruthfulQA_tr
Winogrande _tr
GSM8k_tr
## Usage Examples
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"Cerebrum/cere-llama-3-8b-tr",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Cerebrum/cere-llama-3-8b-tr")
prompt = "Python'da ekrana 'Merhaba Dünya' nasıl yazılır?"
messages = [
{"role": "system", "content": "Sen, Cerebrum Tech tarafından üretilen ve verilen talimatları takip ederek en iyi cevabı üretmeye çalışan yardımcı bir yapay zekasın."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
temperature=0.3,
top_k=50,
top_p=0.9,
max_new_tokens=512,
repetition_penalty=1,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```