|
--- |
|
license: llama3 |
|
language: |
|
- tr |
|
model-index: |
|
- name: cere-llama-3-8b-tr |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge TR |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc |
|
value: 44.03 |
|
name: accuracy |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag TR |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc |
|
value: 46.73 |
|
name: accuracy |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU TR |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 49.11 |
|
name: accuracy |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA TR |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc |
|
name: accuracy |
|
value: 48.21 |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande TR |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc |
|
value: 54.98 |
|
name: accuracy |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k TR |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 51.78 |
|
name: accuracy |
|
--- |
|
# CERE-LLMA-3-8b-TR |
|
|
|
This model is an fine-tuned version of a Llama3 8b Large Language Model (LLM) for Turkish. It was trained on a high quality Turkish instruction sets created from various open-source and internal resources. Turkish Instruction dataset carefully annotated to carry out Turkish instructions in an accurate and organized manner. |
|
|
|
## Model Details |
|
|
|
- **Base Model**: LLMA 3 7B based LLM |
|
- **Tokenizer Extension**: Specifically extended for Turkish |
|
- **Training Dataset**: Cleaned Turkish raw data with 5 billion tokens, custom Turkish instruction sets |
|
- **Training Method**: Initially with DORA, followed by fine-tuning with LORA |
|
|
|
[Open LLM Turkish Leaderboard v0.2 Evaluation Results] |
|
|
|
Metric Value |
|
Avg. |
|
AI2 Reasoning Challenge_tr |
|
HellaSwag_tr |
|
MMLU_tr |
|
TruthfulQA_tr |
|
Winogrande _tr |
|
GSM8k_tr |
|
|
|
## Usage Examples |
|
|
|
```python |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"Cerebrum/cere-llama-3-8b-tr", |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("Cerebrum/cere-llama-3-8b-tr") |
|
|
|
prompt = "Python'da ekrana 'Merhaba Dünya' nasıl yazılır?" |
|
messages = [ |
|
{"role": "system", "content": "Sen, Cerebrum Tech tarafından üretilen ve verilen talimatları takip ederek en iyi cevabı üretmeye çalışan yardımcı bir yapay zekasın."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(device) |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
temperature=0.3, |
|
top_k=50, |
|
top_p=0.9, |
|
max_new_tokens=512, |
|
repetition_penalty=1, |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |