File size: 2,456 Bytes
561c61b
1d3f8f2
 
 
 
 
 
 
 
 
 
561c61b
 
1d3f8f2
 
561c61b
1d3f8f2
561c61b
1d3f8f2
 
eda0d4d
 
 
561c61b
1d3f8f2
561c61b
1d3f8f2
561c61b
1d3f8f2
561c61b
1d3f8f2
561c61b
1d3f8f2
561c61b
1d3f8f2
561c61b
1d3f8f2
561c61b
1d3f8f2
561c61b
1d3f8f2
 
 
 
 
 
 
 
 
 
 
561c61b
1d3f8f2
561c61b
1d3f8f2
 
eda0d4d
 
 
 
 
 
 
 
 
 
 
 
 
 
561c61b
 
1d3f8f2
561c61b
1d3f8f2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
base_model: google-t5/t5-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: t5_es_weight_2_1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5_es_weight_2_1

This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0241
- Accuracy: 0.997
- F1: 0.9972

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 4096
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|
| 0.7035        | 6.8817  | 50   | 0.6738          | 0.7045   | 0.7288 |
| 0.6463        | 13.7634 | 100  | 0.5114          | 0.8975   | 0.9015 |
| 0.2909        | 20.6452 | 150  | 0.0785          | 0.977    | 0.9783 |
| 0.0595        | 27.5269 | 200  | 0.0455          | 0.987    | 0.9878 |
| 0.0286        | 34.4086 | 250  | 0.0283          | 0.992    | 0.9925 |
| 0.0158        | 41.2903 | 300  | 0.0219          | 0.9945   | 0.9948 |
| 0.0086        | 48.1720 | 350  | 0.0180          | 0.996    | 0.9962 |
| 0.0048        | 55.0538 | 400  | 0.0172          | 0.9955   | 0.9958 |
| 0.0031        | 61.9355 | 450  | 0.0223          | 0.9955   | 0.9958 |
| 0.002         | 68.8172 | 500  | 0.0199          | 0.9955   | 0.9958 |
| 0.0012        | 75.6989 | 550  | 0.0201          | 0.9965   | 0.9967 |
| 0.0008        | 82.5806 | 600  | 0.0190          | 0.997    | 0.9972 |
| 0.0008        | 89.4624 | 650  | 0.0205          | 0.997    | 0.9972 |
| 0.0007        | 96.3441 | 700  | 0.0241          | 0.997    | 0.9972 |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1