File size: 31,289 Bytes
eba33b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
# -*- coding: utf-8 -*-
import math
import re
from dataclasses import dataclass
from typing import Optional, Tuple, List, Union, Dict

import numpy as np
import torch
import torch.nn as nn
from transformers import ErnieModel, ErniePreTrainedModel, PretrainedConfig, PreTrainedTokenizerFast
from transformers.utils import ModelOutput


@dataclass
class UIEModelOutput(ModelOutput):
    """
    Output class for outputs of UIE.
    Args:
        loss (`torch.FloatTensor` of shape `(1),`, *optional*, returned when `labels` is provided):
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        start_prob (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
            Span-start scores (after Sigmoid).
        end_prob (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
            Span-end scores (after Sigmoid).
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding
            layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.
            Attentions weights after the attention softmax, used to compute the weighted average in the
            self-attention heads.
    """
    loss: Optional[torch.FloatTensor] = None
    start_prob: torch.FloatTensor = None
    end_prob: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


class UIE(ErniePreTrainedModel):
    """
    UIE model based on Bert model.
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)
    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.
    Parameters:
        config ([`PretrainedConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
    """

    def __init__(self, config: PretrainedConfig):
        super(UIE, self).__init__(config)
        self.encoder = ErnieModel(config)
        self.config = config
        hidden_size = self.config.hidden_size

        self.linear_start = nn.Linear(hidden_size, 1)
        self.linear_end = nn.Linear(hidden_size, 1)
        self.sigmoid = nn.Sigmoid()

        self.post_init()

    def forward(self, input_ids: Optional[torch.Tensor] = None,
                token_type_ids: Optional[torch.Tensor] = None,
                position_ids: Optional[torch.Tensor] = None,
                attention_mask: Optional[torch.Tensor] = None,
                head_mask: Optional[torch.Tensor] = None,
                inputs_embeds: Optional[torch.Tensor] = None,
                start_positions: Optional[torch.Tensor] = None,
                end_positions: Optional[torch.Tensor] = None,
                output_attentions: Optional[bool] = None,
                output_hidden_states: Optional[bool] = None,
                return_dict: Optional[bool] = None
                ):
        """
        Args:
        input_ids (`torch.LongTensor` of shape `({0})`):
            Indices of input sequence tokens in the vocabulary.
            Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.
            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:
            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
            [What are token type IDs?](../glossary#token-type-ids)
        position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.
            [What are position IDs?](../glossary#position-ids)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        outputs = self.encoder(
            input_ids=input_ids,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )
        sequence_output = outputs[0]

        start_logits = self.linear_start(sequence_output)
        start_logits = torch.squeeze(start_logits, -1)
        start_prob = self.sigmoid(start_logits)
        end_logits = self.linear_end(sequence_output)
        end_logits = torch.squeeze(end_logits, -1)
        end_prob = self.sigmoid(end_logits)

        total_loss = None
        if start_positions is not None and end_positions is not None:
            loss_fct = nn.BCELoss()
            start_loss = loss_fct(start_prob, start_positions)
            end_loss = loss_fct(end_prob, end_positions)
            total_loss = (start_loss + end_loss) / 2.0

        if not return_dict:
            output = (start_prob, end_prob) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return UIEModelOutput(
            loss=total_loss,
            start_prob=start_prob,
            end_prob=end_prob,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def predict(self, schema: Union[Dict, List[str], str], input_texts: Union[List[str], str],
                tokenizer: PreTrainedTokenizerFast, max_length: int = 512, batch_size: int = 32,
                position_prob: int = 0.5, progress_hook=None) -> List[Dict]:
        """

        Args:
            schema (Union[Dict, List[str], str]): 抽取目标
            input_texts (input_texts: Union[List[str], str]): 待抽取文本
            tokenizer (PreTrainedTokenizerFast):
            max_length (int):
            batch_size (int):
            position_prob (float):
            progress_hook:

        Returns:
            result (List[Dict]):
        """

        predictor = UIEPredictor(self, tokenizer=tokenizer, schema=schema, max_length=max_length,
                                 position_prob=position_prob, batch_size=batch_size, hook=progress_hook)
        input_texts = [input_texts] if isinstance(input_texts, str) else input_texts
        return predictor.predict(input_texts)


class UIEPredictor(object):
    def __init__(self, model, tokenizer, schema, max_length=512, position_prob=0.5, batch_size=32, hook=None):
        self.model = model
        self._tokenizer = tokenizer

        self._position_prob = position_prob
        self.max_length = max_length
        self._batch_size = batch_size
        self._multilingual = getattr(self.model.config, 'multilingual', False)
        self._schema_tree = self.set_schema(schema)
        self._hook = hook

    def set_schema(self, schema):
        if isinstance(schema, dict) or isinstance(schema, str):
            schema = [schema]
        return self._build_tree(schema)

    @classmethod
    def _build_tree(cls, schema, name="root"):
        """
        Build the schema tree.
        """
        schema_tree = SchemaTree(name)
        for s in schema:
            if isinstance(s, str):
                schema_tree.add_child(SchemaTree(s))
            elif isinstance(s, dict):
                for k, v in s.items():
                    if isinstance(v, str):
                        child = [v]
                    elif isinstance(v, list):
                        child = v
                    else:
                        raise TypeError(
                            "Invalid schema, value for each key:value pairs should be list or string"
                            "but {} received".format(type(v))
                        )
                    schema_tree.add_child(cls._build_tree(child, name=k))
            else:
                raise TypeError("Invalid schema, element should be string or dict, " "but {} received".format(type(s)))
        return schema_tree

    def _single_stage_predict(self, inputs):
        input_texts = []
        prompts = []
        for i in range(len(inputs)):
            input_texts.append(inputs[i]["text"])
            prompts.append(inputs[i]["prompt"])
        # max predict length should exclude the length of prompt and summary tokens
        max_predict_len = self.max_length - len(max(prompts)) - 3
        short_input_texts, self.input_mapping = Utils.auto_splitter(input_texts, max_predict_len, split_sentence=False)

        short_texts_prompts = []
        for k, v in self.input_mapping.items():
            short_texts_prompts.extend([prompts[k] for _ in range(len(v))])
        short_inputs = [
            {"text": short_input_texts[i], "prompt": short_texts_prompts[i]} for i in range(len(short_input_texts))
        ]

        prompts = []
        texts = []
        for s in short_inputs:
            prompts.append(s["prompt"])
            texts.append(s["text"])

        if self._multilingual:
            padding_type = "max_length"
        else:
            padding_type = "longest"

        encoded_inputs = self._tokenizer(
            text=prompts,
            text_pair=texts,
            stride=2,
            truncation=True,
            max_length=self.max_length,
            padding=padding_type,
            add_special_tokens=True,
            return_offsets_mapping=True,
            return_tensors="np")

        offset_maps = encoded_inputs["offset_mapping"]
        start_probs = []
        end_probs = []
        for idx in range(0, len(texts), self._batch_size):
            l, r = idx, idx + self._batch_size

            input_ids = encoded_inputs["input_ids"][l:r]
            token_type_ids = encoded_inputs["token_type_ids"][l:r]
            attention_mask = encoded_inputs["attention_mask"][l:r]

            if self._multilingual:
                input_ids = np.array(
                    input_ids, dtype="int64")
                attention_mask = np.array(
                    attention_mask, dtype="int64")
                position_ids = (np.cumsum(np.ones_like(input_ids), axis=1)
                                - np.ones_like(input_ids)) * attention_mask
                input_dict = {
                    "input_ids": input_ids,
                    "attention_mask": attention_mask,
                    "position_ids": position_ids
                }
            else:
                input_dict = {
                    "input_ids": np.array(
                        input_ids, dtype="int64"),
                    "token_type_ids": np.array(
                        token_type_ids, dtype="int64"),
                    "attention_mask": np.array(
                        attention_mask, dtype="int64")
                }

            start_prob, end_prob = self._infer(input_dict)
            start_prob = start_prob.tolist()
            end_prob = end_prob.tolist()
            start_probs.extend(start_prob)
            end_probs.extend(end_prob)
            if self._hook is not None:
                self._hook.update(1)
        start_ids_list = Utils.get_bool_ids_greater_than(start_probs, limit=self._position_prob, return_prob=True)
        end_ids_list = Utils.get_bool_ids_greater_than(end_probs, limit=self._position_prob, return_prob=True)
        sentence_ids = []
        probs = []
        for start_ids, end_ids, offset_map in zip(start_ids_list, end_ids_list, offset_maps.tolist()):
            span_list = Utils.get_span(start_ids, end_ids, with_prob=True)
            sentence_id, prob = Utils.get_id_and_prob(span_list, offset_map)
            sentence_ids.append(sentence_id)
            probs.append(prob)
        results = Utils.convert_ids_to_results(short_inputs, sentence_ids, probs)
        results = Utils.auto_joiner(results, short_input_texts, self.input_mapping)
        return results

    def _multi_stage_predict(self, data):
        """
        Traversal the schema tree and do multi-stage prediction.
        Args:
            data (list): a list of strings
        Returns:
            list: a list of predictions, where the list's length
                equals to the length of `data`
        """
        results = [{} for _ in range(len(data))]
        # input check to early return
        if len(data) < 1 or self._schema_tree is None:
            return results

        _pre_node_total = len(data) // self._batch_size + (1 if len(data) % self._batch_size else 0)
        _finish_node = 0
        if self._hook is not None:
            self._hook.reset(total=self._schema_tree.shape * _pre_node_total)

        # copy to stay `self._schema_tree` unchanged
        schema_list = self._schema_tree.children[:]
        while len(schema_list) > 0:
            node = schema_list.pop(0)
            examples = []
            input_map = {}
            cnt = 0
            idx = 0
            if not node.prefix:
                for one_data in data:
                    examples.append({"text": one_data, "prompt": Utils.dbc2sbc(node.name)})
                    input_map[cnt] = [idx]
                    idx += 1
                    cnt += 1
            else:
                for pre, one_data in zip(node.prefix, data):
                    if len(pre) == 0:
                        input_map[cnt] = []
                    else:
                        for p in pre:
                            examples.append({"text": one_data, "prompt": Utils.dbc2sbc(p + node.name)})
                        input_map[cnt] = [i + idx for i in range(len(pre))]
                        idx += len(pre)
                    cnt += 1
            if len(examples) == 0:
                result_list = []
            else:
                result_list = self._single_stage_predict(examples)

            if not node.parent_relations:
                relations = [[] for _ in range(len(data))]
                for k, v in input_map.items():
                    for idx in v:
                        if len(result_list[idx]) == 0:
                            continue
                        if node.name not in results[k].keys():
                            results[k][node.name] = result_list[idx]
                        else:
                            results[k][node.name].extend(result_list[idx])
                    if node.name in results[k].keys():
                        relations[k].extend(results[k][node.name])
            else:
                relations = node.parent_relations
                for k, v in input_map.items():
                    for i in range(len(v)):
                        if len(result_list[v[i]]) == 0:
                            continue
                        if "relations" not in relations[k][i].keys():
                            relations[k][i]["relations"] = {node.name: result_list[v[i]]}
                        elif node.name not in relations[k][i]["relations"].keys():
                            relations[k][i]["relations"][node.name] = result_list[v[i]]
                        else:
                            relations[k][i]["relations"][node.name].extend(result_list[v[i]])
                new_relations = [[] for _ in range(len(data))]
                for i in range(len(relations)):
                    for j in range(len(relations[i])):
                        if "relations" in relations[i][j].keys() and node.name in relations[i][j]["relations"].keys():
                            for k in range(len(relations[i][j]["relations"][node.name])):
                                new_relations[i].append(relations[i][j]["relations"][node.name][k])
                relations = new_relations

            prefix = [[] for _ in range(len(data))]
            for k, v in input_map.items():
                for idx in v:
                    for i in range(len(result_list[idx])):
                        prefix[k].append(result_list[idx][i]["text"] + "的")
            for child in node.children:
                child.prefix = prefix
                child.parent_relations = relations
                schema_list.append(child)
            _finish_node += 1
            if self._hook is not None:
                self._hook.n = _finish_node * _pre_node_total
        if self._hook is not None:
            self._hook.close()
        return results

    def _infer(self, input_dict):
        for input_name, input_value in input_dict.items():
            input_dict[input_name] = torch.LongTensor(input_value).to(self.model.device)
        outputs = self.model(**input_dict)
        return outputs.start_prob.detach().cpu().numpy(), outputs.end_prob.detach().cpu().numpy()

    def predict(self, input_data):
        results = self._multi_stage_predict(data=input_data)
        return results


class SchemaTree(object):
    """
    Implementataion of SchemaTree
    """

    def __init__(self, name="root", children=None):
        self.name = name
        self.children = []
        self.prefix = None
        self.parent_relations = None
        if children is not None:
            for child in children:
                self.add_child(child)
        self._total_nodes = 0

    @property
    def shape(self):
        return len(self.children) + sum([child.shape for child in self.children])

    def __repr__(self):
        return self.name

    def add_child(self, node):
        assert isinstance(node, SchemaTree), "The children of a node should be an instacne of SchemaTree."
        self._total_nodes += 1
        self.children.append(node)


class Utils:

    @classmethod
    def dbc2sbc(cls, s):
        rs = ""
        for char in s:
            code = ord(char)
            if code == 0x3000:
                code = 0x0020
            else:
                code -= 0xFEE0
            if not (0x0021 <= code <= 0x7E):
                rs += char
                continue
            rs += chr(code)
        return rs

    @classmethod
    def cut_chinese_sent(cls, para):
        """
        Cut the Chinese sentences more precisely, reference to
        "https://blog.csdn.net/blmoistawinde/article/details/82379256".
        """
        para = re.sub(r'([。!??])([^”’])', r"\1\n\2", para)  # 单字符断句符
        para = re.sub(r'(\.{6})([^”’])', r"\1\n\2", para)  # 英文省略号
        para = re.sub(r'(…{2})([^”’])', r"\1\n\2", para)  # 中文省略号
        para = re.sub(r'([。!??][”’])([^,。!??])', r'\1\n\2', para)
        para = para.rstrip()
        return para.split("\n")

    @classmethod
    def get_bool_ids_greater_than(cls, probs, limit=0.5, return_prob=False):
        """
        Get idx of the last dimension in probability arrays, which is greater than a limitation.

        Args:
            probs (List[List[float]]): The input probability arrays.
            limit (float): The limitation for probability.
            return_prob (bool): Whether to return the probability
        Returns:
            List[List[int]]: The index of the last dimension meet the conditions.
        """
        probs = np.array(probs)
        dim_len = len(probs.shape)
        if dim_len > 1:
            result = []
            for p in probs:
                result.append(cls.get_bool_ids_greater_than(p, limit, return_prob))
            return result
        else:
            result = []
            for i, p in enumerate(probs):
                if p > limit:
                    if return_prob:
                        result.append((i, p))
                    else:
                        result.append(i)
            return result

    @classmethod
    def get_span(cls, start_ids, end_ids, with_prob=False):
        """
        Get span set from position start and end list.

        Args:
            start_ids (List[int]/List[tuple]): The start index list.
            end_ids (List[int]/List[tuple]): The end index list.
            with_prob (bool): If True, each element for start_ids and end_ids is a tuple as like: (index, probability).
        Returns:
            set: The span set without overlapping, every id can only be used once .
        """
        if with_prob:
            start_ids = sorted(start_ids, key=lambda x: x[0])
            end_ids = sorted(end_ids, key=lambda x: x[0])
        else:
            start_ids = sorted(start_ids)
            end_ids = sorted(end_ids)

        start_pointer = 0
        end_pointer = 0
        len_start = len(start_ids)
        len_end = len(end_ids)
        couple_dict = {}
        while start_pointer < len_start and end_pointer < len_end:
            if with_prob:
                start_id = start_ids[start_pointer][0]
                end_id = end_ids[end_pointer][0]
            else:
                start_id = start_ids[start_pointer]
                end_id = end_ids[end_pointer]

            if start_id == end_id:
                couple_dict[end_ids[end_pointer]] = start_ids[start_pointer]
                start_pointer += 1
                end_pointer += 1
                continue
            if start_id < end_id:
                couple_dict[end_ids[end_pointer]] = start_ids[start_pointer]
                start_pointer += 1
                continue
            if start_id > end_id:
                end_pointer += 1
                continue
        result = [(couple_dict[end], end) for end in couple_dict]
        result = set(result)
        return result

    @classmethod
    def get_id_and_prob(cls, span_set, offset_mapping: np.array):
        """
        Return text id and probability of predicted spans

        Args:
            span_set (set): set of predicted spans.
            offset_mapping (numpy.array): list of pair preserving the
                    index of start and end char in original text pair (prompt + text) for each token.
        Returns:
            sentence_id (list[tuple]): index of start and end char in original text.
            prob (list[float]): probabilities of predicted spans.
        """
        prompt_end_token_id = offset_mapping[1:].index([0, 0])
        bias = offset_mapping[prompt_end_token_id][1] + 1
        for index in range(1, prompt_end_token_id + 1):
            offset_mapping[index][0] -= bias
            offset_mapping[index][1] -= bias

        sentence_id = []
        prob = []
        for start, end in span_set:
            prob.append(start[1] * end[1])
            start_id = offset_mapping[start[0]][0]
            end_id = offset_mapping[end[0]][1]
            sentence_id.append((start_id, end_id))
        return sentence_id, prob

    @classmethod
    def auto_splitter(cls, input_texts, max_text_len, split_sentence=False):
        """
        Split the raw texts automatically for model inference.
        Args:
            input_texts (List[str]): input raw texts.
            max_text_len (int): cutting length.
            split_sentence (bool): If True, sentence-level split will be performed.
        return:
            short_input_texts (List[str]): the short input texts for model inference.
            input_mapping (dict): mapping between raw text and short input texts.
        """
        input_mapping = {}
        short_input_texts = []
        cnt_org = 0
        cnt_short = 0
        for text in input_texts:
            if not split_sentence:
                sens = [text]
            else:
                sens = Utils.cut_chinese_sent(text)
            for sen in sens:
                lens = len(sen)
                if lens <= max_text_len:
                    short_input_texts.append(sen)
                    if cnt_org not in input_mapping.keys():
                        input_mapping[cnt_org] = [cnt_short]
                    else:
                        input_mapping[cnt_org].append(cnt_short)
                    cnt_short += 1
                else:
                    temp_text_list = [sen[i: i + max_text_len] for i in range(0, lens, max_text_len)]
                    short_input_texts.extend(temp_text_list)
                    short_idx = cnt_short
                    cnt_short += math.ceil(lens / max_text_len)
                    temp_text_id = [short_idx + i for i in range(cnt_short - short_idx)]
                    if cnt_org not in input_mapping.keys():
                        input_mapping[cnt_org] = temp_text_id
                    else:
                        input_mapping[cnt_org].extend(temp_text_id)
            cnt_org += 1
        return short_input_texts, input_mapping

    @classmethod
    def convert_ids_to_results(cls, examples, sentence_ids, probs):
        """
        Convert ids to raw text in a single stage.
        """
        results = []
        for example, sentence_id, prob in zip(examples, sentence_ids, probs):
            if len(sentence_id) == 0:
                results.append([])
                continue
            result_list = []
            text = example["text"]
            prompt = example["prompt"]
            for i in range(len(sentence_id)):
                start, end = sentence_id[i]
                if start < 0 and end >= 0:
                    continue
                if end < 0:
                    start += len(prompt) + 1
                    end += len(prompt) + 1
                    result = {"text": prompt[start:end], "probability": prob[i]}
                    result_list.append(result)
                else:
                    result = {"text": text[start:end], "start": start, "end": end, "probability": prob[i]}
                    result_list.append(result)
            results.append(result_list)
        return results

    @classmethod
    def auto_joiner(cls, short_results, short_inputs, input_mapping):
        concat_results = []
        is_cls_task = False
        for short_result in short_results:
            if not short_result:
                continue
            elif "start" not in short_result[0].keys() and "end" not in short_result[0].keys():
                is_cls_task = True
                break
            else:
                break
        for k, vs in input_mapping.items():
            if is_cls_task:
                cls_options = {}
                for v in vs:
                    if len(short_results[v]) == 0:
                        continue
                    if short_results[v][0]["text"] not in cls_options.keys():
                        cls_options[short_results[v][0]["text"]] = [1, short_results[v][0]["probability"]]
                    else:
                        cls_options[short_results[v][0]["text"]][0] += 1
                        cls_options[short_results[v][0]["text"]][1] += short_results[v][0]["probability"]
                if len(cls_options) != 0:
                    cls_res, cls_info = max(cls_options.items(), key=lambda x: x[1])
                    concat_results.append([{"text": cls_res, "probability": cls_info[1] / cls_info[0]}])
                else:
                    concat_results.append([])
            else:
                offset = 0
                single_results = []
                for v in vs:
                    if v == 0:
                        single_results = short_results[v]
                        offset += len(short_inputs[v])
                    else:
                        for i in range(len(short_results[v])):
                            if "start" not in short_results[v][i] or "end" not in short_results[v][i]:
                                continue
                            short_results[v][i]["start"] += offset
                            short_results[v][i]["end"] += offset
                        offset += len(short_inputs[v])
                        single_results.extend(short_results[v])
                concat_results.append(single_results)
        return concat_results