File size: 1,585 Bytes
005705b f4a8bc2 005705b 09d29a1 005705b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
license: apache-2.0
language:
- en
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
pipeline_tag: image-text-to-text
---
# Llama 3.1 Vision by Capx AI
![image/png](https://cdn-uploads.huggingface.co/production/uploads/644bf6ef778ecbfb977e8e84/aqJhIxDi2M_F3KJgl5dar.png)
## Directions to Run Inference:
**Minimum requirements to run Inference is an A100 40GB GPU.**
- Clone our fork of the Bunny by BAAI repository here: https://github.com/adarshxs/Capx-Llama-3.1-Carrot
- Create a conda virtual environment
```bash
conda create -n capx python=3.10
conda activate capx
```
- Install the following
```bash
pip install --upgrade pip # enable PEP 660 support
pip install transformers
pip install torch torchvision xformers --index-url https://download.pytorch.org/whl/cu118
# Installing APEX
pip install ninja
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./
cd ..
# Installing Flash Attn
pip install packaging
pip install flash-attn --no-build-isolation
# Clone the inference Repo
git clone https://github.com/adarshxs/Capx-Llama3.1-Vision
cd Capx-Llama3.1-Vision
pip install -e .
```
- Run cli server:
```bash
python -m bunny.serve.cli \
--model-path Capx/Llama-3.1-Vision \
--model-type llama3.1-8b \
--image-file /path/to/image \
--conv-mode llama
```
We thank the amazing team at BAAI, for their Bunny project, upon which this was built and Meta AI for their Llama 3.1 model! |