File size: 1,585 Bytes
005705b
 
 
 
 
 
 
 
 
 
f4a8bc2
005705b
 
 
 
09d29a1
005705b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
license: apache-2.0
language:
- en
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
pipeline_tag: image-text-to-text
---

# Llama 3.1 Vision by Capx AI

![image/png](https://cdn-uploads.huggingface.co/production/uploads/644bf6ef778ecbfb977e8e84/aqJhIxDi2M_F3KJgl5dar.png)

## Directions to Run Inference:
**Minimum requirements to run Inference is an A100 40GB GPU.**

- Clone our fork of the Bunny by BAAI repository here: https://github.com/adarshxs/Capx-Llama-3.1-Carrot
- Create a conda virtual environment
  ```bash
  conda create -n capx python=3.10
  conda activate capx
  ```
- Install the following
  ```bash
  pip install --upgrade pip  # enable PEP 660 support
  pip install transformers
  pip install torch torchvision xformers --index-url https://download.pytorch.org/whl/cu118

  # Installing APEX
  pip install ninja
  git clone https://github.com/NVIDIA/apex
  cd apex
  pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  cd ..

  # Installing Flash Attn
  pip install packaging
  pip install flash-attn --no-build-isolation
  
  # Clone the inference Repo
  git clone https://github.com/adarshxs/Capx-Llama3.1-Vision
  cd Capx-Llama3.1-Vision
  pip install -e .
  ```
- Run cli server:
  ```bash
  python -m bunny.serve.cli \
	--model-path Capx/Llama-3.1-Vision \
	--model-type llama3.1-8b \
	--image-file /path/to/image \
	--conv-mode llama
  ```

We thank the amazing team at BAAI, for their Bunny project, upon which this was built and Meta AI for their Llama 3.1 model!