File size: 1,352 Bytes
c4c1688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7d23f
c4c1688
6d43f55
c4c1688
6d43f55
c4c1688
 
 
 
 
 
 
 
 
 
67eaaf7
 
 
c4c1688
 
 
 
 
fd37dc9
c4c1688
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
language: 
- multilingual
- ar 
- cs
- de
- en
- es
- et
- fi
- fr
- gu
- hi
- it
- ja
- kk
- ko
- lt
- lv
- my
- ne
- nl
- ro
- ru
- si
- tr
- vi
- zh
- af
- az
- bn
- fa
- he
- hr
- id
- ka
- km
- mk
- ml
- mn
- mr
- pl
- ps
- pt
- sv
- sw
- ta
- te
- th
- tl
- uk
- ur
- xh
- gl
- sl
license: mit
tags:
- mbart-50
---

# Knight-errant

Knight is a text style transfer model for knight-errant style. This model is for Chinese Knight-errant style transfer.

paper link: [To be a Knight-errant Novel Master: Knight-errant Style Transfer via Contrastive Learning](https://openreview.net/forum?id=FDw2hdpiWNO)


```python

#inference
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast

model = MBartForConditionalGeneration.from_pretrained("Anonymous-TST/knight-errant-TST-zh")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="zh_CN", tgt_lang="zh_CN")

model.cuda()
model.eval()

article_1 = "jinyong: 接下来会发生什么?"
batch = tokenizer(article_1, return_tensors="pt",return_token_type_ids=False, truncation=True, max_length=64, padding=True).to('cuda')
translated_tokens = model.generate(**batch,max_length=64)
decoded = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True,  clean_up_tokenization_spaces=True)
print(decoded)
# 欲知后事如何?
```




```