File size: 14,361 Bytes
cbff41a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import os
import ast
import random
import torch
import pandas as pd
from functools import partial
from transformers import TrainingArguments, AutoTokenizer, HfArgumentParser
from utils.my_trainer import CustomTrainer
from utils.utils import my_compute_metrics,seed_everything
from typing import Optional
from dataclasses import dataclass, field
from model.my_model import WPathVLM
from model.my_model_vision import WPathVLM as WPathVLM_Vision
from peft import LoraConfig, get_peft_model
from datasets import load_dataset, concatenate_datasets, load_from_disk
from utils.data_collator import MyDataCollatorForWPathVLM
from utils.formatting_funcs import wsi_formatting_des, wsi_formatting_qa_open, wsi_formatting_qa_close
@dataclass
class ScriptArguments:
"""
The name of the Casual LM model we wish to fine with SFTTrainer
"""
# system config
gpu: Optional[str] = field(default="0", metadata={"help": "gpu"})
load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"})
load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
trust_remote_code: Optional[bool] = field(default=False, metadata={"help": "Enable `trust_remote_code`"})
token: Optional[bool] = field(default=True, metadata={"help": "Use HF auth token to access the model"})
seed: Optional[int] = field(default=42, metadata={"help": "seed"})
# model
llm_name: Optional[str] = field(default="/data_local/pxb/LLM_models/llama3/llama3.1-8b-instruct", metadata={"help": "the model name, mistralai/Mistral-7B-Instruct-v0.2, meta-llama/Meta-Llama-3-8B"})
vision_adaptor: Optional[bool] = field(default=False, metadata={"help": "True or False (with interaction with text), using for longnet and qformer."})
hierachical_token: Optional[bool] = field(default=True, metadata={"help": "True or False"})
hierachical_adaptor: Optional[bool] = field(default=True, metadata={"help": "True or False, only for longnet and qformer"})
# data
select_data_num: Optional[int] = field(default=-1, metadata={"help": "the number of training data, -1 mean use all data"})
dataset_name_list: Optional[str] = field(default="CNX-PathLLM/TCGA-WSI-Description,CNX-PathLLM/GTEx-WSI-Description")
dataset_text_field: Optional[str] = field(default="text", metadata={"help": "the text field of the dataset"})
data_cache_dir: Optional[str] = field(default="/data_local/pxb/CNX-PathLLM/.cache", metadata={"help": "the cache dir the dataset and model, /bask/projects/p/phwq4930-gbm/Zeyu/PathVLM/.cache"})
data_local_dir: Optional[str] = field(default=None, metadata={"help": "if not None, load from local"})
fea_root: Optional[str] = field(default="/data_local/pxb/CNX-PathLLM/GTEx-TCGA-Embeddings", metadata={"help": "the root path for WSI feature"})
gmm_root: Optional[str] = field(default="/data_local/pxb/CNX-PathLLM/GMM_PT", metadata={"help": "the root path for WSI feature"})
ckpt_path: Optional[str] = field(default=None, metadata={"help": "ckpt path"})
# log and save model
log_with: Optional[str] = field(default="wandb", metadata={"help": "use 'wandb' to log with wandb"})
output_dir: Optional[str] = field(default="/data_local/pxb/LLM_output/test_merge", metadata={"help": "the output directory"})
logging_steps: Optional[int] = field(default=5, metadata={"help": "the number of logging steps"})
max_steps: Optional[int] = field(default=-1, metadata={"help": "the number of training steps"})
warmup_steps: Optional[int] = field(default=20, metadata={"help": "the number of warmup steps"})
save_steps: Optional[int] = field(default=120, metadata={"help": "Number of updates steps before two checkpoint saves"})
save_total_limit: Optional[int] = field(default=10, metadata={"help": "Limits total number of checkpoints."})
llm_requires_grad: Optional[bool] = field(default=False, metadata={"help": "True or /output/checkpoint-1400"})
resume_from_checkpoint: Optional[bool] = field(default=False, metadata={"help": "True or /output/checkpoint-1400"})
# training hypterparam
learning_rate: Optional[float] = field(default=2.0e-5, metadata={"help": "the learning rate"})
train_batch_size: Optional[int] = field(default=40, metadata={"help": "the batch size"})
eval_batch_size: Optional[int] = field(default=48, metadata={"help": "the batch size"})
max_seq_length: Optional[int] = field(default=512, metadata={"help": "Input sequence length"})
gradient_accumulation_steps: Optional[int] = field(default=8, metadata={"help": "the number of gradient accumulation steps"})
num_train_epochs: Optional[int] = field(default=5, metadata={"help": "the number of training epochs"})
# WSI hyperparam
n_level: Optional[int] = field(default=3, metadata={"help": "the number of herachical levels for WSI embedding"})
embed_dim: Optional[int] = field(default=512, metadata={"help": "embedding dimension of each patch, conch: 512, gmm: 2*d+1"})
agg_strategy: Optional[str] = field(default='gmm,longnet', metadata={"help": "the strategy for WSI aggregation, sample, kmeans, gmm, abmil, qformer, longnet"})
n_heads: Optional[str] = field(default='32,16,8', metadata={"help": "the number of attention heads for WSI aggregation, for sample and abmil"})
# eval
evaluation_strategy: Optional[str] = field(default="steps", metadata={"help": "epoch, step"})
eval_steps: Optional[int] = field(default=100000, metadata={"help": "eval_steps"})
# unused
push_to_hub: Optional[bool] = field(default=False, metadata={"help": "Push the model to HF Hub"})
use_peft: Optional[bool] = field(default=False, metadata={"help": "Wether to use PEFT or not to train adapters"})
peft_lora_r: Optional[int] = field(default=64, metadata={"help": "the r parameter of the LoRA adapters"})
peft_lora_alpha: Optional[int] = field(default=16, metadata={"help": "the alpha parameter of the LoRA adapters"})
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
seed_everything(script_args.seed)
# os.environ["WANDB_MODE"] = "offline"
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = script_args.gpu
device = 'cuda'
print(script_args)
# set up tokenizer
tokenizer = AutoTokenizer.from_pretrained(script_args.llm_name)
#tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token = "<|finetune_right_pad_id|>"
tokenizer.padding_side = 'right'
tokenizer.truncation_side = 'right'
if script_args.hierachical_token:
new_tokens = ['<|Question|>', '<|Prompt|>', '<|Answer|>', '<|Image|>', '<|High|>', '<|`Mid`|>', '<|Low|>']
else:
new_tokens = ['<|Question|>', '<|Prompt|>', '<|Answer|>', '<|Image|>']
num_added_toks = tokenizer.add_special_tokens({"additional_special_tokens": new_tokens})
# num_added_toks = tokenizer.add_tokens(new_tokens)
new_tokens_ids = tokenizer.convert_tokens_to_ids(new_tokens)
print("new_tokens_ids: ", new_tokens_ids)
if script_args.select_data_num>0:
split_text = "train[:{}]".format(script_args.select_data_num)
else:
split_text = "train"
# if script_args.data_local_dir is None:
dataset = []
for dataset_name in script_args.dataset_name_list.split(","):
columns_to_remove = ['slide_id']
one_dataset = load_dataset(dataset_name, split=split_text, cache_dir=script_args.data_cache_dir)
if 'project' in one_dataset.column_names:
columns_to_remove.append('project')
elif 'site' in one_dataset.column_names:
columns_to_remove.append('site')
if 'QA' in dataset_name: # for QA instruction dataset
columns_to_remove += ['question', 'answer']
if 'Open' in dataset_name: # for OpenQA instruction dataset
one_dataset = one_dataset.map(wsi_formatting_qa_open, fn_kwargs={'tokenizer': tokenizer},
num_proc=20, remove_columns=columns_to_remove)
else: # for CloseQA instruction dataset
one_dataset = one_dataset.map(wsi_formatting_qa_close, fn_kwargs={'tokenizer': tokenizer},
num_proc=20, remove_columns=columns_to_remove)
else:
columns_to_remove += ['description']
one_dataset = one_dataset.map(wsi_formatting_des, fn_kwargs={'tokenizer': tokenizer},
num_proc=20, remove_columns=columns_to_remove)
dataset.append(one_dataset)
dataset = concatenate_datasets(dataset)
# dataset = dataset.train_test_split(test_size=0.05)
# eval_dataset = dataset['test']
# train_dataset = dataset['train']
train_dataset = dataset
eval_dataset = None
# else:
# dataset = load_from_disk(script_args.data_local_dir)
# dataset = dataset.map(formatting_func, num_proc=20, remove_columns=['label', 'slide_id', 'project'])
# train_folds = [dataset[f'fold_{i}'] for i in range(10) if i != script_args.eval_fold_index]
# train_dataset = concatenate_datasets(train_folds)
# eval_dataset = dataset['fold_{}'.format(script_args.eval_fold_index)]
# df_indices = pd.read_csv(script_args.dataset_split)
# train_indices = df_indices[df_indices['fold'] != (script_args.test_split_fold-1)]['index'].tolist()
# test_indices = df_indices[df_indices['fold'] == (script_args.test_split_fold-1)]['index'].tolist()
# train_dataset = dataset.select(train_indices)
# eval_dataset = dataset.select(test_indices)
print(train_dataset)
print(eval_dataset)
if script_args.vision_adaptor:
model = WPathVLM_Vision(script_args.llm_requires_grad,
script_args.load_in_8bit,
script_args.load_in_4bit,
script_args.llm_name,
script_args.trust_remote_code, # False
script_args.token, # True
tokenizer,
image_token_id = new_tokens_ids[3:],
n_heads = script_args.n_heads,
n_level = script_args.n_level,
embed_dim = script_args.embed_dim,
agg_strategy = script_args.agg_strategy,
hierachical_token = script_args.hierachical_token,
hierachical_adaptor=script_args.hierachical_adaptor,
data_cache_dir = script_args.data_cache_dir,
)
else:
model = WPathVLM(script_args.llm_requires_grad,
script_args.load_in_8bit,
script_args.load_in_4bit,
script_args.llm_name,
script_args.trust_remote_code, # False
script_args.token, # True
tokenizer,
image_token_id = new_tokens_ids[3:],
n_heads = script_args.n_heads,
n_level = script_args.n_level,
embed_dim = script_args.embed_dim,
agg_strategy = script_args.agg_strategy,
hierachical_token = script_args.hierachical_token,
hierachical_adaptor=script_args.hierachical_adaptor,
data_cache_dir = script_args.data_cache_dir,
)
model.print_parameter_counts()
model.print_llm_parameters()
print("output dir is set to: {}".format(script_args.output_dir))
training_args = TrainingArguments(
output_dir=script_args.output_dir,
per_device_train_batch_size=script_args.train_batch_size,
per_device_eval_batch_size=script_args.eval_batch_size,
gradient_accumulation_steps=script_args.gradient_accumulation_steps,
# gradient_checkpointing=True,
learning_rate=script_args.learning_rate,
lr_scheduler_type="constant_with_warmup",
logging_steps=script_args.logging_steps,
num_train_epochs=script_args.num_train_epochs,
max_steps=script_args.max_steps,
report_to=script_args.log_with,
save_steps=script_args.save_steps,
save_total_limit=script_args.save_total_limit,
bf16=True,
warmup_steps=script_args.warmup_steps,
evaluation_strategy=script_args.evaluation_strategy,
eval_steps=script_args.eval_steps,
logging_first_step=True,
remove_unused_columns=False,
label_names=["labels"]
)
if script_args.use_peft:
peft_config = LoraConfig(
r=script_args.peft_lora_r, # Use a moderate rank
lora_alpha=script_args.peft_lora_alpha, # Scaling factor
bias="none", # No bias adaptation
task_type="CAUSAL_LM", # For causal language modeling tasks
# lora_dropout=0.1, # Use dropout for regularization
# target_modules=["q_proj", "v_proj"], # Focus on key attention components
# init_lora_weights="pissa" # Use random initialization
)
model.llm = get_peft_model(model.llm, peft_config)
model.llm.print_trainable_parameters()
else:
peft_config = None
if script_args.ckpt_path is not None:
model.load_state_dict(torch.load(script_args.ckpt_path, map_location=device), strict=False)
# model = model.to(torch.bfloat16)
print("load pre-trained model from: {}".format(script_args.ckpt_path))
model.print_llm_parameters()
else:
print("no pretrained weights loaded from users!")
data_collator = MyDataCollatorForWPathVLM(tokenizer=tokenizer,
fea_root=script_args.fea_root,
gmm_root = script_args.gmm_root,
fea_dim=script_args.embed_dim,
n_level=script_args.n_level,
n_heads=list(map(int, script_args.n_heads.split(','))),
agg_strategy=script_args.agg_strategy)
trainer = CustomTrainer(
model=model,
args=training_args,
max_seq_length=script_args.max_seq_length,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
dataset_text_field=script_args.dataset_text_field,
peft_config=None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=my_compute_metrics,
)
trainer.train(resume_from_checkpoint=script_args.resume_from_checkpoint) |