English
File size: 14,361 Bytes
cbff41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import os
import ast
import random
import torch
import pandas as pd
from functools import partial
from transformers import TrainingArguments, AutoTokenizer, HfArgumentParser
from utils.my_trainer import CustomTrainer
from utils.utils import my_compute_metrics,seed_everything
from typing import Optional
from dataclasses import dataclass, field
from model.my_model import WPathVLM
from model.my_model_vision import WPathVLM as WPathVLM_Vision
from peft import LoraConfig, get_peft_model
from datasets import load_dataset, concatenate_datasets, load_from_disk
from utils.data_collator import MyDataCollatorForWPathVLM
from utils.formatting_funcs import wsi_formatting_des, wsi_formatting_qa_open, wsi_formatting_qa_close

@dataclass
class ScriptArguments:
    """
    The name of the Casual LM model we wish to fine with SFTTrainer
    """

    # system config
    gpu: Optional[str] = field(default="0", metadata={"help": "gpu"})
    load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"})
    load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
    trust_remote_code: Optional[bool] = field(default=False, metadata={"help": "Enable `trust_remote_code`"})
    token: Optional[bool] = field(default=True, metadata={"help": "Use HF auth token to access the model"})
    seed: Optional[int] = field(default=42, metadata={"help": "seed"})

    # model
    llm_name: Optional[str] = field(default="/data_local/pxb/LLM_models/llama3/llama3.1-8b-instruct", metadata={"help": "the model name, mistralai/Mistral-7B-Instruct-v0.2, meta-llama/Meta-Llama-3-8B"})
    vision_adaptor: Optional[bool] = field(default=False, metadata={"help": "True or  False (with interaction with text), using for longnet and qformer."})
    hierachical_token: Optional[bool] = field(default=True, metadata={"help": "True or  False"})
    hierachical_adaptor: Optional[bool] = field(default=True, metadata={"help": "True or  False, only for longnet and qformer"})
    
    # data
    select_data_num: Optional[int] = field(default=-1, metadata={"help": "the number of training data, -1 mean use all data"})
    dataset_name_list: Optional[str] = field(default="CNX-PathLLM/TCGA-WSI-Description,CNX-PathLLM/GTEx-WSI-Description")
    dataset_text_field: Optional[str] = field(default="text", metadata={"help": "the text field of the dataset"})
    data_cache_dir: Optional[str] = field(default="/data_local/pxb/CNX-PathLLM/.cache", metadata={"help": "the cache dir the dataset and model, /bask/projects/p/phwq4930-gbm/Zeyu/PathVLM/.cache"})
    data_local_dir: Optional[str] = field(default=None, metadata={"help": "if not None, load from local"})
    fea_root: Optional[str] = field(default="/data_local/pxb/CNX-PathLLM/GTEx-TCGA-Embeddings", metadata={"help": "the root path for WSI feature"})
    gmm_root: Optional[str] = field(default="/data_local/pxb/CNX-PathLLM/GMM_PT", metadata={"help": "the root path for WSI feature"})
    ckpt_path: Optional[str] = field(default=None, metadata={"help": "ckpt path"})


    # log and save model
    log_with: Optional[str] = field(default="wandb", metadata={"help": "use 'wandb' to log with wandb"})
    output_dir: Optional[str] = field(default="/data_local/pxb/LLM_output/test_merge", metadata={"help": "the output directory"})
    logging_steps: Optional[int] = field(default=5, metadata={"help": "the number of logging steps"})
    max_steps: Optional[int] = field(default=-1, metadata={"help": "the number of training steps"})
    warmup_steps: Optional[int] = field(default=20, metadata={"help": "the number of warmup steps"})
    save_steps: Optional[int] = field(default=120, metadata={"help": "Number of updates steps before two checkpoint saves"})
    save_total_limit: Optional[int] = field(default=10, metadata={"help": "Limits total number of checkpoints."})
    
    llm_requires_grad: Optional[bool] = field(default=False, metadata={"help": "True or  /output/checkpoint-1400"})
    resume_from_checkpoint: Optional[bool] = field(default=False, metadata={"help": "True or  /output/checkpoint-1400"})
    
    # training hypterparam
    learning_rate: Optional[float] = field(default=2.0e-5, metadata={"help": "the learning rate"})
    train_batch_size: Optional[int] = field(default=40, metadata={"help": "the batch size"})
    eval_batch_size: Optional[int] = field(default=48, metadata={"help": "the batch size"})
    max_seq_length: Optional[int] = field(default=512, metadata={"help": "Input sequence length"})
    gradient_accumulation_steps: Optional[int] = field(default=8, metadata={"help": "the number of gradient accumulation steps"})
    num_train_epochs: Optional[int] = field(default=5, metadata={"help": "the number of training epochs"})

    # WSI hyperparam
    n_level: Optional[int] = field(default=3, metadata={"help": "the number of herachical levels for WSI embedding"})
    embed_dim: Optional[int] = field(default=512, metadata={"help": "embedding dimension of each patch, conch: 512, gmm: 2*d+1"})
    agg_strategy: Optional[str] = field(default='gmm,longnet', metadata={"help": "the strategy for WSI aggregation, sample, kmeans, gmm, abmil, qformer, longnet"})
    n_heads: Optional[str] = field(default='32,16,8', metadata={"help": "the number of attention heads for WSI aggregation, for sample and abmil"})
    
    # eval
    evaluation_strategy: Optional[str] = field(default="steps", metadata={"help": "epoch, step"})
    eval_steps: Optional[int] = field(default=100000, metadata={"help": "eval_steps"})

    # unused
    push_to_hub: Optional[bool] = field(default=False, metadata={"help": "Push the model to HF Hub"})
    use_peft: Optional[bool] = field(default=False, metadata={"help": "Wether to use PEFT or not to train adapters"})
    peft_lora_r: Optional[int] = field(default=64, metadata={"help": "the r parameter of the LoRA adapters"})
    peft_lora_alpha: Optional[int] = field(default=16, metadata={"help": "the alpha parameter of the LoRA adapters"})

parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
seed_everything(script_args.seed)

# os.environ["WANDB_MODE"] = "offline"
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = script_args.gpu
device = 'cuda'
print(script_args)

# set up tokenizer
tokenizer = AutoTokenizer.from_pretrained(script_args.llm_name)
#tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token = "<|finetune_right_pad_id|>"
tokenizer.padding_side = 'right'
tokenizer.truncation_side = 'right'

if script_args.hierachical_token:
    new_tokens = ['<|Question|>', '<|Prompt|>', '<|Answer|>', '<|Image|>', '<|High|>', '<|`Mid`|>', '<|Low|>']
else:
    new_tokens = ['<|Question|>', '<|Prompt|>', '<|Answer|>', '<|Image|>']
    
num_added_toks = tokenizer.add_special_tokens({"additional_special_tokens": new_tokens})
# num_added_toks = tokenizer.add_tokens(new_tokens)
new_tokens_ids = tokenizer.convert_tokens_to_ids(new_tokens)
print("new_tokens_ids: ", new_tokens_ids)

if script_args.select_data_num>0:
    split_text = "train[:{}]".format(script_args.select_data_num)
else:
    split_text = "train"

# if script_args.data_local_dir is None:
dataset = []

for dataset_name in script_args.dataset_name_list.split(","):
    columns_to_remove = ['slide_id']
    one_dataset = load_dataset(dataset_name, split=split_text, cache_dir=script_args.data_cache_dir)
    if 'project' in one_dataset.column_names:
        columns_to_remove.append('project')
    elif 'site' in one_dataset.column_names:
        columns_to_remove.append('site')

    if 'QA' in dataset_name:  # for QA instruction dataset
        columns_to_remove += ['question', 'answer']
        if 'Open' in dataset_name: # for OpenQA instruction dataset
            one_dataset = one_dataset.map(wsi_formatting_qa_open, fn_kwargs={'tokenizer': tokenizer},
                                        num_proc=20, remove_columns=columns_to_remove)
        else: # for CloseQA instruction dataset
            one_dataset = one_dataset.map(wsi_formatting_qa_close, fn_kwargs={'tokenizer': tokenizer},
                                        num_proc=20, remove_columns=columns_to_remove)
    else:
        columns_to_remove += ['description']
        one_dataset = one_dataset.map(wsi_formatting_des, fn_kwargs={'tokenizer': tokenizer}, 
                                    num_proc=20, remove_columns=columns_to_remove)
    dataset.append(one_dataset)

dataset = concatenate_datasets(dataset)

# dataset = dataset.train_test_split(test_size=0.05)
# eval_dataset = dataset['test']
# train_dataset = dataset['train']
train_dataset = dataset
eval_dataset = None

# else:
#     dataset = load_from_disk(script_args.data_local_dir)
#     dataset = dataset.map(formatting_func, num_proc=20, remove_columns=['label', 'slide_id', 'project'])
#     train_folds = [dataset[f'fold_{i}'] for i in range(10) if i != script_args.eval_fold_index]
#     train_dataset = concatenate_datasets(train_folds)
#     eval_dataset = dataset['fold_{}'.format(script_args.eval_fold_index)]

# df_indices = pd.read_csv(script_args.dataset_split)

# train_indices = df_indices[df_indices['fold'] != (script_args.test_split_fold-1)]['index'].tolist()
# test_indices = df_indices[df_indices['fold'] == (script_args.test_split_fold-1)]['index'].tolist()

# train_dataset = dataset.select(train_indices)
# eval_dataset = dataset.select(test_indices)
print(train_dataset)
print(eval_dataset)

if script_args.vision_adaptor:
    model = WPathVLM_Vision(script_args.llm_requires_grad, 
                            script_args.load_in_8bit, 
                            script_args.load_in_4bit, 
                            script_args.llm_name, 
                            script_args.trust_remote_code, # False
                            script_args.token, # True
                            tokenizer,
                            image_token_id = new_tokens_ids[3:],
                            n_heads = script_args.n_heads, 
                            n_level = script_args.n_level, 
                            embed_dim = script_args.embed_dim,
                            agg_strategy = script_args.agg_strategy,
                            hierachical_token = script_args.hierachical_token,
                            hierachical_adaptor=script_args.hierachical_adaptor,
                            data_cache_dir = script_args.data_cache_dir,
                            )
else:
    model = WPathVLM(script_args.llm_requires_grad, 
                    script_args.load_in_8bit, 
                    script_args.load_in_4bit, 
                    script_args.llm_name, 
                    script_args.trust_remote_code, # False
                    script_args.token, # True
                    tokenizer,
                    image_token_id = new_tokens_ids[3:],
                    n_heads = script_args.n_heads, 
                    n_level = script_args.n_level, 
                    embed_dim = script_args.embed_dim,
                    agg_strategy = script_args.agg_strategy,
                    hierachical_token = script_args.hierachical_token,
                    hierachical_adaptor=script_args.hierachical_adaptor,
                    data_cache_dir = script_args.data_cache_dir,
                    )

model.print_parameter_counts()
model.print_llm_parameters()

print("output dir is set to: {}".format(script_args.output_dir))

training_args = TrainingArguments(
    output_dir=script_args.output_dir,
    per_device_train_batch_size=script_args.train_batch_size,
    per_device_eval_batch_size=script_args.eval_batch_size,
    gradient_accumulation_steps=script_args.gradient_accumulation_steps,
    # gradient_checkpointing=True,
    learning_rate=script_args.learning_rate,
    lr_scheduler_type="constant_with_warmup",
    logging_steps=script_args.logging_steps,
    num_train_epochs=script_args.num_train_epochs,
    max_steps=script_args.max_steps,
    report_to=script_args.log_with,
    save_steps=script_args.save_steps,
    save_total_limit=script_args.save_total_limit,
    bf16=True,
    warmup_steps=script_args.warmup_steps,
    evaluation_strategy=script_args.evaluation_strategy,
    eval_steps=script_args.eval_steps,
    logging_first_step=True,
    remove_unused_columns=False,
    label_names=["labels"]
)

if script_args.use_peft:
    peft_config = LoraConfig(
        r=script_args.peft_lora_r,  # Use a moderate rank
        lora_alpha=script_args.peft_lora_alpha,  # Scaling factor
        bias="none",  # No bias adaptation
        task_type="CAUSAL_LM",  # For causal language modeling tasks
        # lora_dropout=0.1,  # Use dropout for regularization
        # target_modules=["q_proj", "v_proj"],  # Focus on key attention components
        # init_lora_weights="pissa"  # Use random initialization
    )
    model.llm = get_peft_model(model.llm, peft_config)
    model.llm.print_trainable_parameters()
else:
    peft_config = None

if script_args.ckpt_path is not None:
    model.load_state_dict(torch.load(script_args.ckpt_path, map_location=device), strict=False)
    # model = model.to(torch.bfloat16)
    print("load pre-trained model from: {}".format(script_args.ckpt_path))
    model.print_llm_parameters()
else:
    print("no pretrained weights loaded from users!")

data_collator = MyDataCollatorForWPathVLM(tokenizer=tokenizer, 
                                        fea_root=script_args.fea_root, 
                                        gmm_root = script_args.gmm_root,
                                        fea_dim=script_args.embed_dim, 
                                        n_level=script_args.n_level,
                                        n_heads=list(map(int, script_args.n_heads.split(','))),
                                        agg_strategy=script_args.agg_strategy)

trainer = CustomTrainer(
    model=model,
    args=training_args,
    max_seq_length=script_args.max_seq_length,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    dataset_text_field=script_args.dataset_text_field,
    peft_config=None,
    tokenizer=tokenizer,
    data_collator=data_collator,
    compute_metrics=my_compute_metrics,
)

trainer.train(resume_from_checkpoint=script_args.resume_from_checkpoint)