File size: 1,284 Bytes
55776fe 56b5890 692e550 2850c1a 6cd5273 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
---
tags:
- translation
---
This model translate from English to Khmer.
It is the pure fine-tuned version of MarianMT model en-zh.
This is the result after 30 epochs of pure fine-tuning of khmer language.
### Example
```
%%capture
!pip install transformers transformers[sentencepiece]
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Download the pretrained model for English-Vietnamese available on the hub
model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/en-km")
tokenizer = AutoTokenizer.from_pretrained("CLAck/en-km")
# Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it
# We used the one coming from the initial model
# This tokenizer is used to tokenize the input sentence
tokenizer_en = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh')
# These special tokens are needed to reproduce the original tokenizer
tokenizer_en.add_tokens(["<2zh>", "<2khm>"], special_tokens=True)
sentence = "The cat is on the table"
# This token is needed to identify the target language
input_sentence = "<2khm> " + sentence
translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True))
output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
``` |