CJ-gyuwonpark commited on
Commit
b244b0e
·
1 Parent(s): 78239ba

Upload 6 files

Browse files
Files changed (6) hide show
  1. README.md +198 -35
  2. adapter_config.json +4 -4
  3. adapter_model.bin +2 -2
  4. scheduler.pt +3 -0
  5. trainer_state.json +2365 -0
  6. training_args.bin +3 -0
README.md CHANGED
@@ -1,56 +1,219 @@
1
  ---
2
- license: apache-2.0
3
  base_model: mistralai/Mistral-7B-v0.1
4
- tags:
5
- - generated_from_trainer
6
- model-index:
7
- - name: v3-mistral
8
- results: []
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
 
14
- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
- # v3-mistral
16
 
17
- This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
18
 
19
- ## Model description
20
 
21
- More information needed
22
 
23
- ## Intended uses & limitations
24
 
25
- More information needed
26
 
27
- ## Training and evaluation data
28
 
29
- More information needed
30
 
31
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
- ### Training hyperparameters
34
 
35
- The following hyperparameters were used during training:
36
- - learning_rate: 0.0004
37
- - train_batch_size: 1
38
- - eval_batch_size: 1
39
- - seed: 42
40
- - gradient_accumulation_steps: 4
41
- - total_train_batch_size: 4
42
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
- - lr_scheduler_type: cosine
44
- - lr_scheduler_warmup_steps: 10
45
- - num_epochs: 1
46
 
47
- ### Training results
48
 
 
49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
  ### Framework versions
52
 
53
- - Transformers 4.35.0.dev0
54
- - Pytorch 2.0.1+cu117
55
- - Datasets 2.14.5
56
- - Tokenizers 0.14.1
 
1
  ---
2
+ library_name: peft
3
  base_model: mistralai/Mistral-7B-v0.1
 
 
 
 
 
4
  ---
5
 
6
+ # Model Card for Model ID
 
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
11
 
12
+ ## Model Details
13
 
14
+ ### Model Description
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
17
 
 
18
 
 
19
 
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
 
114
+ #### Factors
115
 
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
 
 
 
 
 
 
 
 
117
 
118
+ [More Information Needed]
119
 
120
+ #### Metrics
121
 
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
 
216
  ### Framework versions
217
 
218
+
219
+ - PEFT 0.6.0.dev0
 
 
adapter_config.json CHANGED
@@ -12,16 +12,16 @@
12
  "lora_dropout": 0.05,
13
  "modules_to_save": null,
14
  "peft_type": "LORA",
15
- "r": 16,
16
  "rank_pattern": {},
17
  "revision": null,
18
  "target_modules": [
19
- "v_proj",
20
- "k_proj",
21
- "q_proj",
22
  "gate_proj",
23
  "up_proj",
 
 
24
  "down_proj",
 
25
  "o_proj"
26
  ],
27
  "task_type": "CAUSAL_LM"
 
12
  "lora_dropout": 0.05,
13
  "modules_to_save": null,
14
  "peft_type": "LORA",
15
+ "r": 32,
16
  "rank_pattern": {},
17
  "revision": null,
18
  "target_modules": [
 
 
 
19
  "gate_proj",
20
  "up_proj",
21
+ "k_proj",
22
+ "q_proj",
23
  "down_proj",
24
+ "v_proj",
25
  "o_proj"
26
  ],
27
  "task_type": "CAUSAL_LM"
adapter_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cc1ca753a18a2fa2cf85b156f888ff6e8067311f0c663cec2e3e6e3b6f8ad054
3
- size 167933581
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05f64f54e1e081c49fcb1764ef414facf58be449d5f826463bbc972874d997a9
3
+ size 335705741
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d13d63ad74be6c18da94e5dc6a735a5a0a75f7836fdfa08213df83b1cc5f5d33
3
+ size 627
trainer_state.json ADDED
@@ -0,0 +1,2365 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.998639455782313,
5
+ "eval_steps": 20,
6
+ "global_step": 367,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 2e-05,
14
+ "loss": 1.264,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 4e-05,
20
+ "loss": 0.9796,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 6e-05,
26
+ "loss": 0.9343,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 8e-05,
32
+ "loss": 1.165,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.0001,
38
+ "loss": 1.1233,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 0.00012,
44
+ "loss": 0.9889,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.00014,
50
+ "loss": 0.9492,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 0.00016,
56
+ "loss": 1.1725,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 0.00018,
62
+ "loss": 0.9987,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 0.0002,
68
+ "loss": 1.0273,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 0.0001999961280430958,
74
+ "loss": 0.9883,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.03,
79
+ "learning_rate": 0.00019998451247222416,
80
+ "loss": 0.8587,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 0.0001999651541868849,
86
+ "loss": 0.9096,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.04,
91
+ "learning_rate": 0.00019993805468616693,
92
+ "loss": 1.0186,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "learning_rate": 0.00019990321606863225,
98
+ "loss": 0.9402,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.04,
103
+ "learning_rate": 0.00019986064103215339,
104
+ "loss": 0.927,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.05,
109
+ "learning_rate": 0.00019981033287370443,
110
+ "loss": 0.935,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.05,
115
+ "learning_rate": 0.00019975229548910582,
116
+ "loss": 0.9498,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.05,
121
+ "learning_rate": 0.00019968653337272261,
122
+ "loss": 1.0335,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.05,
127
+ "learning_rate": 0.0001996130516171164,
128
+ "loss": 0.8899,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.05,
133
+ "eval_loss": 1.3891513347625732,
134
+ "eval_runtime": 119.0073,
135
+ "eval_samples_per_second": 3.706,
136
+ "eval_steps_per_second": 1.857,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.06,
141
+ "learning_rate": 0.00019953185591265103,
142
+ "loss": 0.8179,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.06,
147
+ "learning_rate": 0.00019944295254705185,
148
+ "loss": 1.1169,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.06,
153
+ "learning_rate": 0.00019934634840491886,
154
+ "loss": 0.9125,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.07,
159
+ "learning_rate": 0.0001992420509671936,
160
+ "loss": 0.9177,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.07,
165
+ "learning_rate": 0.00019913006831057969,
166
+ "loss": 0.8608,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.07,
171
+ "learning_rate": 0.0001990104091069176,
172
+ "loss": 0.7755,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.07,
177
+ "learning_rate": 0.00019888308262251285,
178
+ "loss": 1.0967,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.08,
183
+ "learning_rate": 0.00019874809871741876,
184
+ "loss": 0.9759,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.08,
189
+ "learning_rate": 0.00019860546784467248,
190
+ "loss": 0.9605,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.08,
195
+ "learning_rate": 0.00019845520104948592,
196
+ "loss": 1.0065,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.08,
201
+ "learning_rate": 0.0001982973099683902,
202
+ "loss": 0.9643,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.09,
207
+ "learning_rate": 0.00019813180682833447,
208
+ "loss": 0.9065,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.09,
213
+ "learning_rate": 0.00019795870444573935,
214
+ "loss": 1.1212,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.09,
219
+ "learning_rate": 0.00019777801622550408,
220
+ "loss": 0.8759,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.1,
225
+ "learning_rate": 0.00019758975615996873,
226
+ "loss": 0.8474,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.1,
231
+ "learning_rate": 0.00019739393882783047,
232
+ "loss": 0.9243,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.1,
237
+ "learning_rate": 0.00019719057939301477,
238
+ "loss": 0.9369,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.1,
243
+ "learning_rate": 0.00019697969360350098,
244
+ "loss": 1.0376,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.11,
249
+ "learning_rate": 0.00019676129779010282,
250
+ "loss": 0.8972,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.11,
255
+ "learning_rate": 0.00019653540886520386,
256
+ "loss": 0.8402,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.11,
261
+ "eval_loss": 1.3678525686264038,
262
+ "eval_runtime": 119.0464,
263
+ "eval_samples_per_second": 3.704,
264
+ "eval_steps_per_second": 1.856,
265
+ "step": 40
266
+ },
267
+ {
268
+ "epoch": 0.11,
269
+ "learning_rate": 0.0001963020443214478,
270
+ "loss": 0.8425,
271
+ "step": 41
272
+ },
273
+ {
274
+ "epoch": 0.11,
275
+ "learning_rate": 0.00019606122223038376,
276
+ "loss": 0.9518,
277
+ "step": 42
278
+ },
279
+ {
280
+ "epoch": 0.12,
281
+ "learning_rate": 0.0001958129612410668,
282
+ "loss": 1.0741,
283
+ "step": 43
284
+ },
285
+ {
286
+ "epoch": 0.12,
287
+ "learning_rate": 0.0001955572805786141,
288
+ "loss": 0.9275,
289
+ "step": 44
290
+ },
291
+ {
292
+ "epoch": 0.12,
293
+ "learning_rate": 0.00019529420004271567,
294
+ "loss": 1.049,
295
+ "step": 45
296
+ },
297
+ {
298
+ "epoch": 0.13,
299
+ "learning_rate": 0.00019502374000610151,
300
+ "loss": 0.974,
301
+ "step": 46
302
+ },
303
+ {
304
+ "epoch": 0.13,
305
+ "learning_rate": 0.00019474592141296372,
306
+ "loss": 0.856,
307
+ "step": 47
308
+ },
309
+ {
310
+ "epoch": 0.13,
311
+ "learning_rate": 0.00019446076577733475,
312
+ "loss": 1.1511,
313
+ "step": 48
314
+ },
315
+ {
316
+ "epoch": 0.13,
317
+ "learning_rate": 0.00019416829518142118,
318
+ "loss": 0.8645,
319
+ "step": 49
320
+ },
321
+ {
322
+ "epoch": 0.14,
323
+ "learning_rate": 0.0001938685322738939,
324
+ "loss": 0.9042,
325
+ "step": 50
326
+ },
327
+ {
328
+ "epoch": 0.14,
329
+ "learning_rate": 0.00019356150026813405,
330
+ "loss": 0.914,
331
+ "step": 51
332
+ },
333
+ {
334
+ "epoch": 0.14,
335
+ "learning_rate": 0.00019324722294043558,
336
+ "loss": 1.1324,
337
+ "step": 52
338
+ },
339
+ {
340
+ "epoch": 0.14,
341
+ "learning_rate": 0.00019292572462816388,
342
+ "loss": 0.8499,
343
+ "step": 53
344
+ },
345
+ {
346
+ "epoch": 0.15,
347
+ "learning_rate": 0.0001925970302278711,
348
+ "loss": 1.0545,
349
+ "step": 54
350
+ },
351
+ {
352
+ "epoch": 0.15,
353
+ "learning_rate": 0.0001922611651933683,
354
+ "loss": 0.8526,
355
+ "step": 55
356
+ },
357
+ {
358
+ "epoch": 0.15,
359
+ "learning_rate": 0.00019191815553375427,
360
+ "loss": 0.909,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 0.16,
365
+ "learning_rate": 0.0001915680278114014,
366
+ "loss": 1.0598,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 0.16,
371
+ "learning_rate": 0.0001912108091398988,
372
+ "loss": 0.8763,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 0.16,
377
+ "learning_rate": 0.00019084652718195238,
378
+ "loss": 0.905,
379
+ "step": 59
380
+ },
381
+ {
382
+ "epoch": 0.16,
383
+ "learning_rate": 0.00019047521014724304,
384
+ "loss": 0.9795,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 0.16,
389
+ "eval_loss": 1.3594976663589478,
390
+ "eval_runtime": 119.047,
391
+ "eval_samples_per_second": 3.704,
392
+ "eval_steps_per_second": 1.856,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.17,
397
+ "learning_rate": 0.0001900968867902419,
398
+ "loss": 0.8955,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.17,
403
+ "learning_rate": 0.00018971158640798368,
404
+ "loss": 0.9148,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.17,
409
+ "learning_rate": 0.00018931933883779785,
410
+ "loss": 1.0147,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.17,
415
+ "learning_rate": 0.0001889201744549981,
416
+ "loss": 0.9123,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.18,
421
+ "learning_rate": 0.0001885141241705303,
422
+ "loss": 0.7681,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.18,
427
+ "learning_rate": 0.00018810121942857845,
428
+ "loss": 0.8203,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.18,
433
+ "learning_rate": 0.0001876814922041299,
434
+ "loss": 0.9618,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.19,
439
+ "learning_rate": 0.00018725497500049907,
440
+ "loss": 0.9399,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.19,
445
+ "learning_rate": 0.00018682170084681065,
446
+ "loss": 1.0265,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.19,
451
+ "learning_rate": 0.00018638170329544164,
452
+ "loss": 1.0596,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.19,
457
+ "learning_rate": 0.00018593501641942317,
458
+ "loss": 1.2212,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.2,
463
+ "learning_rate": 0.00018548167480980193,
464
+ "loss": 1.0959,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.2,
469
+ "learning_rate": 0.00018502171357296144,
470
+ "loss": 0.7914,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.2,
475
+ "learning_rate": 0.00018455516832790338,
476
+ "loss": 0.9506,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.2,
481
+ "learning_rate": 0.00018408207520348942,
482
+ "loss": 0.8409,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.21,
487
+ "learning_rate": 0.00018360247083564342,
488
+ "loss": 0.9833,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.21,
493
+ "learning_rate": 0.00018311639236451416,
494
+ "loss": 1.0708,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.21,
499
+ "learning_rate": 0.0001826238774315995,
500
+ "loss": 0.9121,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.21,
505
+ "learning_rate": 0.00018212496417683137,
506
+ "loss": 0.9433,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.22,
511
+ "learning_rate": 0.0001816196912356222,
512
+ "loss": 0.8529,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.22,
517
+ "eval_loss": 1.3516823053359985,
518
+ "eval_runtime": 119.0215,
519
+ "eval_samples_per_second": 3.705,
520
+ "eval_steps_per_second": 1.857,
521
+ "step": 80
522
+ },
523
+ {
524
+ "epoch": 0.22,
525
+ "learning_rate": 0.000181108097735873,
526
+ "loss": 0.9438,
527
+ "step": 81
528
+ },
529
+ {
530
+ "epoch": 0.22,
531
+ "learning_rate": 0.0001805902232949435,
532
+ "loss": 0.9375,
533
+ "step": 82
534
+ },
535
+ {
536
+ "epoch": 0.23,
537
+ "learning_rate": 0.000180066108016584,
538
+ "loss": 0.9696,
539
+ "step": 83
540
+ },
541
+ {
542
+ "epoch": 0.23,
543
+ "learning_rate": 0.00017953579248782995,
544
+ "loss": 0.8329,
545
+ "step": 84
546
+ },
547
+ {
548
+ "epoch": 0.23,
549
+ "learning_rate": 0.00017899931777585882,
550
+ "loss": 0.9701,
551
+ "step": 85
552
+ },
553
+ {
554
+ "epoch": 0.23,
555
+ "learning_rate": 0.00017845672542480984,
556
+ "loss": 0.9774,
557
+ "step": 86
558
+ },
559
+ {
560
+ "epoch": 0.24,
561
+ "learning_rate": 0.00017790805745256704,
562
+ "loss": 0.8261,
563
+ "step": 87
564
+ },
565
+ {
566
+ "epoch": 0.24,
567
+ "learning_rate": 0.00017735335634750532,
568
+ "loss": 1.021,
569
+ "step": 88
570
+ },
571
+ {
572
+ "epoch": 0.24,
573
+ "learning_rate": 0.00017679266506520012,
574
+ "loss": 1.0482,
575
+ "step": 89
576
+ },
577
+ {
578
+ "epoch": 0.24,
579
+ "learning_rate": 0.00017622602702510105,
580
+ "loss": 1.0097,
581
+ "step": 90
582
+ },
583
+ {
584
+ "epoch": 0.25,
585
+ "learning_rate": 0.0001756534861071696,
586
+ "loss": 0.9386,
587
+ "step": 91
588
+ },
589
+ {
590
+ "epoch": 0.25,
591
+ "learning_rate": 0.00017507508664848094,
592
+ "loss": 0.7935,
593
+ "step": 92
594
+ },
595
+ {
596
+ "epoch": 0.25,
597
+ "learning_rate": 0.0001744908734397906,
598
+ "loss": 0.9367,
599
+ "step": 93
600
+ },
601
+ {
602
+ "epoch": 0.26,
603
+ "learning_rate": 0.00017390089172206592,
604
+ "loss": 0.7777,
605
+ "step": 94
606
+ },
607
+ {
608
+ "epoch": 0.26,
609
+ "learning_rate": 0.00017330518718298264,
610
+ "loss": 0.8662,
611
+ "step": 95
612
+ },
613
+ {
614
+ "epoch": 0.26,
615
+ "learning_rate": 0.0001727038059533868,
616
+ "loss": 0.805,
617
+ "step": 96
618
+ },
619
+ {
620
+ "epoch": 0.26,
621
+ "learning_rate": 0.0001720967946037225,
622
+ "loss": 1.0421,
623
+ "step": 97
624
+ },
625
+ {
626
+ "epoch": 0.27,
627
+ "learning_rate": 0.0001714842001404254,
628
+ "loss": 1.0119,
629
+ "step": 98
630
+ },
631
+ {
632
+ "epoch": 0.27,
633
+ "learning_rate": 0.00017086607000228282,
634
+ "loss": 0.9288,
635
+ "step": 99
636
+ },
637
+ {
638
+ "epoch": 0.27,
639
+ "learning_rate": 0.00017024245205675986,
640
+ "loss": 1.0169,
641
+ "step": 100
642
+ },
643
+ {
644
+ "epoch": 0.27,
645
+ "eval_loss": 1.344921588897705,
646
+ "eval_runtime": 119.0551,
647
+ "eval_samples_per_second": 3.704,
648
+ "eval_steps_per_second": 1.856,
649
+ "step": 100
650
+ },
651
+ {
652
+ "epoch": 0.27,
653
+ "learning_rate": 0.0001696133945962927,
654
+ "loss": 0.9399,
655
+ "step": 101
656
+ },
657
+ {
658
+ "epoch": 0.28,
659
+ "learning_rate": 0.00016897894633454886,
660
+ "loss": 0.9817,
661
+ "step": 102
662
+ },
663
+ {
664
+ "epoch": 0.28,
665
+ "learning_rate": 0.00016833915640265484,
666
+ "loss": 0.9042,
667
+ "step": 103
668
+ },
669
+ {
670
+ "epoch": 0.28,
671
+ "learning_rate": 0.00016769407434539168,
672
+ "loss": 0.8495,
673
+ "step": 104
674
+ },
675
+ {
676
+ "epoch": 0.29,
677
+ "learning_rate": 0.0001670437501173578,
678
+ "loss": 0.8376,
679
+ "step": 105
680
+ },
681
+ {
682
+ "epoch": 0.29,
683
+ "learning_rate": 0.00016638823407910084,
684
+ "loss": 0.9603,
685
+ "step": 106
686
+ },
687
+ {
688
+ "epoch": 0.29,
689
+ "learning_rate": 0.00016572757699321791,
690
+ "loss": 0.924,
691
+ "step": 107
692
+ },
693
+ {
694
+ "epoch": 0.29,
695
+ "learning_rate": 0.0001650618300204242,
696
+ "loss": 0.7669,
697
+ "step": 108
698
+ },
699
+ {
700
+ "epoch": 0.3,
701
+ "learning_rate": 0.00016439104471559156,
702
+ "loss": 0.8822,
703
+ "step": 109
704
+ },
705
+ {
706
+ "epoch": 0.3,
707
+ "learning_rate": 0.0001637152730237558,
708
+ "loss": 0.9815,
709
+ "step": 110
710
+ },
711
+ {
712
+ "epoch": 0.3,
713
+ "learning_rate": 0.0001630345672760943,
714
+ "loss": 1.0067,
715
+ "step": 111
716
+ },
717
+ {
718
+ "epoch": 0.3,
719
+ "learning_rate": 0.00016234898018587337,
720
+ "loss": 0.9053,
721
+ "step": 112
722
+ },
723
+ {
724
+ "epoch": 0.31,
725
+ "learning_rate": 0.00016165856484436645,
726
+ "loss": 0.8396,
727
+ "step": 113
728
+ },
729
+ {
730
+ "epoch": 0.31,
731
+ "learning_rate": 0.00016096337471674241,
732
+ "loss": 0.9769,
733
+ "step": 114
734
+ },
735
+ {
736
+ "epoch": 0.31,
737
+ "learning_rate": 0.00016026346363792567,
738
+ "loss": 0.8927,
739
+ "step": 115
740
+ },
741
+ {
742
+ "epoch": 0.32,
743
+ "learning_rate": 0.0001595588858084268,
744
+ "loss": 0.9105,
745
+ "step": 116
746
+ },
747
+ {
748
+ "epoch": 0.32,
749
+ "learning_rate": 0.00015884969579014566,
750
+ "loss": 0.8848,
751
+ "step": 117
752
+ },
753
+ {
754
+ "epoch": 0.32,
755
+ "learning_rate": 0.000158135948502146,
756
+ "loss": 0.8636,
757
+ "step": 118
758
+ },
759
+ {
760
+ "epoch": 0.32,
761
+ "learning_rate": 0.0001574176992164026,
762
+ "loss": 0.8177,
763
+ "step": 119
764
+ },
765
+ {
766
+ "epoch": 0.33,
767
+ "learning_rate": 0.00015669500355352116,
768
+ "loss": 0.8777,
769
+ "step": 120
770
+ },
771
+ {
772
+ "epoch": 0.33,
773
+ "eval_loss": 1.3403385877609253,
774
+ "eval_runtime": 118.9836,
775
+ "eval_samples_per_second": 3.706,
776
+ "eval_steps_per_second": 1.857,
777
+ "step": 120
778
+ },
779
+ {
780
+ "epoch": 0.33,
781
+ "learning_rate": 0.0001559679174784308,
782
+ "loss": 1.0621,
783
+ "step": 121
784
+ },
785
+ {
786
+ "epoch": 0.33,
787
+ "learning_rate": 0.0001552364972960506,
788
+ "loss": 0.9647,
789
+ "step": 122
790
+ },
791
+ {
792
+ "epoch": 0.33,
793
+ "learning_rate": 0.00015450079964692896,
794
+ "loss": 0.9974,
795
+ "step": 123
796
+ },
797
+ {
798
+ "epoch": 0.34,
799
+ "learning_rate": 0.00015376088150285773,
800
+ "loss": 0.942,
801
+ "step": 124
802
+ },
803
+ {
804
+ "epoch": 0.34,
805
+ "learning_rate": 0.00015301680016246028,
806
+ "loss": 0.927,
807
+ "step": 125
808
+ },
809
+ {
810
+ "epoch": 0.34,
811
+ "learning_rate": 0.0001522686132467543,
812
+ "loss": 0.9022,
813
+ "step": 126
814
+ },
815
+ {
816
+ "epoch": 0.35,
817
+ "learning_rate": 0.0001515163786946896,
818
+ "loss": 0.9001,
819
+ "step": 127
820
+ },
821
+ {
822
+ "epoch": 0.35,
823
+ "learning_rate": 0.0001507601547586616,
824
+ "loss": 0.9224,
825
+ "step": 128
826
+ },
827
+ {
828
+ "epoch": 0.35,
829
+ "learning_rate": 0.00015000000000000001,
830
+ "loss": 0.9607,
831
+ "step": 129
832
+ },
833
+ {
834
+ "epoch": 0.35,
835
+ "learning_rate": 0.00014923597328443422,
836
+ "loss": 0.8044,
837
+ "step": 130
838
+ },
839
+ {
840
+ "epoch": 0.36,
841
+ "learning_rate": 0.00014846813377753456,
842
+ "loss": 0.7944,
843
+ "step": 131
844
+ },
845
+ {
846
+ "epoch": 0.36,
847
+ "learning_rate": 0.00014769654094013058,
848
+ "loss": 1.0154,
849
+ "step": 132
850
+ },
851
+ {
852
+ "epoch": 0.36,
853
+ "learning_rate": 0.00014692125452370663,
854
+ "loss": 0.9003,
855
+ "step": 133
856
+ },
857
+ {
858
+ "epoch": 0.36,
859
+ "learning_rate": 0.00014614233456577454,
860
+ "loss": 0.9419,
861
+ "step": 134
862
+ },
863
+ {
864
+ "epoch": 0.37,
865
+ "learning_rate": 0.00014535984138522442,
866
+ "loss": 0.8798,
867
+ "step": 135
868
+ },
869
+ {
870
+ "epoch": 0.37,
871
+ "learning_rate": 0.00014457383557765386,
872
+ "loss": 1.0318,
873
+ "step": 136
874
+ },
875
+ {
876
+ "epoch": 0.37,
877
+ "learning_rate": 0.000143784378010675,
878
+ "loss": 0.9086,
879
+ "step": 137
880
+ },
881
+ {
882
+ "epoch": 0.38,
883
+ "learning_rate": 0.00014299152981920145,
884
+ "loss": 0.9947,
885
+ "step": 138
886
+ },
887
+ {
888
+ "epoch": 0.38,
889
+ "learning_rate": 0.00014219535240071377,
890
+ "loss": 0.9156,
891
+ "step": 139
892
+ },
893
+ {
894
+ "epoch": 0.38,
895
+ "learning_rate": 0.00014139590741050502,
896
+ "loss": 0.8692,
897
+ "step": 140
898
+ },
899
+ {
900
+ "epoch": 0.38,
901
+ "eval_loss": 1.3370156288146973,
902
+ "eval_runtime": 119.006,
903
+ "eval_samples_per_second": 3.706,
904
+ "eval_steps_per_second": 1.857,
905
+ "step": 140
906
+ },
907
+ {
908
+ "epoch": 0.38,
909
+ "learning_rate": 0.0001405932567569062,
910
+ "loss": 0.9393,
911
+ "step": 141
912
+ },
913
+ {
914
+ "epoch": 0.39,
915
+ "learning_rate": 0.00013978746259649209,
916
+ "loss": 0.8703,
917
+ "step": 142
918
+ },
919
+ {
920
+ "epoch": 0.39,
921
+ "learning_rate": 0.00013897858732926793,
922
+ "loss": 0.9319,
923
+ "step": 143
924
+ },
925
+ {
926
+ "epoch": 0.39,
927
+ "learning_rate": 0.00013816669359383726,
928
+ "loss": 1.0655,
929
+ "step": 144
930
+ },
931
+ {
932
+ "epoch": 0.39,
933
+ "learning_rate": 0.00013735184426255117,
934
+ "loss": 0.9344,
935
+ "step": 145
936
+ },
937
+ {
938
+ "epoch": 0.4,
939
+ "learning_rate": 0.00013653410243663952,
940
+ "loss": 1.0119,
941
+ "step": 146
942
+ },
943
+ {
944
+ "epoch": 0.4,
945
+ "learning_rate": 0.0001357135314413245,
946
+ "loss": 0.9353,
947
+ "step": 147
948
+ },
949
+ {
950
+ "epoch": 0.4,
951
+ "learning_rate": 0.0001348901948209167,
952
+ "loss": 0.9807,
953
+ "step": 148
954
+ },
955
+ {
956
+ "epoch": 0.41,
957
+ "learning_rate": 0.00013406415633389438,
958
+ "loss": 0.9972,
959
+ "step": 149
960
+ },
961
+ {
962
+ "epoch": 0.41,
963
+ "learning_rate": 0.00013323547994796597,
964
+ "loss": 0.8184,
965
+ "step": 150
966
+ },
967
+ {
968
+ "epoch": 0.41,
969
+ "learning_rate": 0.0001324042298351166,
970
+ "loss": 0.9096,
971
+ "step": 151
972
+ },
973
+ {
974
+ "epoch": 0.41,
975
+ "learning_rate": 0.00013157047036663853,
976
+ "loss": 0.7666,
977
+ "step": 152
978
+ },
979
+ {
980
+ "epoch": 0.42,
981
+ "learning_rate": 0.0001307342661081463,
982
+ "loss": 0.9412,
983
+ "step": 153
984
+ },
985
+ {
986
+ "epoch": 0.42,
987
+ "learning_rate": 0.00012989568181457704,
988
+ "loss": 0.7595,
989
+ "step": 154
990
+ },
991
+ {
992
+ "epoch": 0.42,
993
+ "learning_rate": 0.00012905478242517562,
994
+ "loss": 0.8968,
995
+ "step": 155
996
+ },
997
+ {
998
+ "epoch": 0.42,
999
+ "learning_rate": 0.00012821163305846596,
1000
+ "loss": 0.8976,
1001
+ "step": 156
1002
+ },
1003
+ {
1004
+ "epoch": 0.43,
1005
+ "learning_rate": 0.0001273662990072083,
1006
+ "loss": 0.8512,
1007
+ "step": 157
1008
+ },
1009
+ {
1010
+ "epoch": 0.43,
1011
+ "learning_rate": 0.00012651884573334297,
1012
+ "loss": 0.9215,
1013
+ "step": 158
1014
+ },
1015
+ {
1016
+ "epoch": 0.43,
1017
+ "learning_rate": 0.00012566933886292106,
1018
+ "loss": 0.828,
1019
+ "step": 159
1020
+ },
1021
+ {
1022
+ "epoch": 0.44,
1023
+ "learning_rate": 0.00012481784418102242,
1024
+ "loss": 0.8962,
1025
+ "step": 160
1026
+ },
1027
+ {
1028
+ "epoch": 0.44,
1029
+ "eval_loss": 1.3367716073989868,
1030
+ "eval_runtime": 118.9758,
1031
+ "eval_samples_per_second": 3.707,
1032
+ "eval_steps_per_second": 1.858,
1033
+ "step": 160
1034
+ },
1035
+ {
1036
+ "epoch": 0.44,
1037
+ "learning_rate": 0.00012396442762666128,
1038
+ "loss": 0.8564,
1039
+ "step": 161
1040
+ },
1041
+ {
1042
+ "epoch": 0.44,
1043
+ "learning_rate": 0.00012310915528768,
1044
+ "loss": 0.8648,
1045
+ "step": 162
1046
+ },
1047
+ {
1048
+ "epoch": 0.44,
1049
+ "learning_rate": 0.00012225209339563145,
1050
+ "loss": 0.9122,
1051
+ "step": 163
1052
+ },
1053
+ {
1054
+ "epoch": 0.45,
1055
+ "learning_rate": 0.00012139330832064974,
1056
+ "loss": 0.8912,
1057
+ "step": 164
1058
+ },
1059
+ {
1060
+ "epoch": 0.45,
1061
+ "learning_rate": 0.00012053286656631093,
1062
+ "loss": 0.8872,
1063
+ "step": 165
1064
+ },
1065
+ {
1066
+ "epoch": 0.45,
1067
+ "learning_rate": 0.00011967083476448282,
1068
+ "loss": 0.8292,
1069
+ "step": 166
1070
+ },
1071
+ {
1072
+ "epoch": 0.45,
1073
+ "learning_rate": 0.00011880727967016514,
1074
+ "loss": 0.858,
1075
+ "step": 167
1076
+ },
1077
+ {
1078
+ "epoch": 0.46,
1079
+ "learning_rate": 0.00011794226815632012,
1080
+ "loss": 0.8548,
1081
+ "step": 168
1082
+ },
1083
+ {
1084
+ "epoch": 0.46,
1085
+ "learning_rate": 0.00011707586720869374,
1086
+ "loss": 0.8587,
1087
+ "step": 169
1088
+ },
1089
+ {
1090
+ "epoch": 0.46,
1091
+ "learning_rate": 0.00011620814392062873,
1092
+ "loss": 1.0234,
1093
+ "step": 170
1094
+ },
1095
+ {
1096
+ "epoch": 0.47,
1097
+ "learning_rate": 0.00011533916548786857,
1098
+ "loss": 0.9115,
1099
+ "step": 171
1100
+ },
1101
+ {
1102
+ "epoch": 0.47,
1103
+ "learning_rate": 0.00011446899920335405,
1104
+ "loss": 1.0819,
1105
+ "step": 172
1106
+ },
1107
+ {
1108
+ "epoch": 0.47,
1109
+ "learning_rate": 0.00011359771245201232,
1110
+ "loss": 0.8818,
1111
+ "step": 173
1112
+ },
1113
+ {
1114
+ "epoch": 0.47,
1115
+ "learning_rate": 0.00011272537270553836,
1116
+ "loss": 0.8352,
1117
+ "step": 174
1118
+ },
1119
+ {
1120
+ "epoch": 0.48,
1121
+ "learning_rate": 0.00011185204751717029,
1122
+ "loss": 0.8977,
1123
+ "step": 175
1124
+ },
1125
+ {
1126
+ "epoch": 0.48,
1127
+ "learning_rate": 0.00011097780451645792,
1128
+ "loss": 0.855,
1129
+ "step": 176
1130
+ },
1131
+ {
1132
+ "epoch": 0.48,
1133
+ "learning_rate": 0.00011010271140402579,
1134
+ "loss": 0.7944,
1135
+ "step": 177
1136
+ },
1137
+ {
1138
+ "epoch": 0.48,
1139
+ "learning_rate": 0.00010922683594633021,
1140
+ "loss": 0.9017,
1141
+ "step": 178
1142
+ },
1143
+ {
1144
+ "epoch": 0.49,
1145
+ "learning_rate": 0.0001083502459704117,
1146
+ "loss": 0.7825,
1147
+ "step": 179
1148
+ },
1149
+ {
1150
+ "epoch": 0.49,
1151
+ "learning_rate": 0.00010747300935864243,
1152
+ "loss": 0.7996,
1153
+ "step": 180
1154
+ },
1155
+ {
1156
+ "epoch": 0.49,
1157
+ "eval_loss": 1.3361833095550537,
1158
+ "eval_runtime": 119.0783,
1159
+ "eval_samples_per_second": 3.703,
1160
+ "eval_steps_per_second": 1.856,
1161
+ "step": 180
1162
+ },
1163
+ {
1164
+ "epoch": 0.49,
1165
+ "learning_rate": 0.00010659519404346954,
1166
+ "loss": 0.9062,
1167
+ "step": 181
1168
+ },
1169
+ {
1170
+ "epoch": 0.5,
1171
+ "learning_rate": 0.00010571686800215444,
1172
+ "loss": 0.7366,
1173
+ "step": 182
1174
+ },
1175
+ {
1176
+ "epoch": 0.5,
1177
+ "learning_rate": 0.00010483809925150869,
1178
+ "loss": 0.7322,
1179
+ "step": 183
1180
+ },
1181
+ {
1182
+ "epoch": 0.5,
1183
+ "learning_rate": 0.00010395895584262696,
1184
+ "loss": 0.7953,
1185
+ "step": 184
1186
+ },
1187
+ {
1188
+ "epoch": 0.5,
1189
+ "learning_rate": 0.00010307950585561706,
1190
+ "loss": 0.848,
1191
+ "step": 185
1192
+ },
1193
+ {
1194
+ "epoch": 0.51,
1195
+ "learning_rate": 0.00010219981739432795,
1196
+ "loss": 1.0637,
1197
+ "step": 186
1198
+ },
1199
+ {
1200
+ "epoch": 0.51,
1201
+ "learning_rate": 0.00010131995858107591,
1202
+ "loss": 0.8968,
1203
+ "step": 187
1204
+ },
1205
+ {
1206
+ "epoch": 0.51,
1207
+ "learning_rate": 0.00010043999755136904,
1208
+ "loss": 1.0545,
1209
+ "step": 188
1210
+ },
1211
+ {
1212
+ "epoch": 0.51,
1213
+ "learning_rate": 9.9560002448631e-05,
1214
+ "loss": 0.9912,
1215
+ "step": 189
1216
+ },
1217
+ {
1218
+ "epoch": 0.52,
1219
+ "learning_rate": 9.868004141892411e-05,
1220
+ "loss": 0.8248,
1221
+ "step": 190
1222
+ },
1223
+ {
1224
+ "epoch": 0.52,
1225
+ "learning_rate": 9.780018260567207e-05,
1226
+ "loss": 0.9459,
1227
+ "step": 191
1228
+ },
1229
+ {
1230
+ "epoch": 0.52,
1231
+ "learning_rate": 9.692049414438299e-05,
1232
+ "loss": 0.8605,
1233
+ "step": 192
1234
+ },
1235
+ {
1236
+ "epoch": 0.53,
1237
+ "learning_rate": 9.604104415737308e-05,
1238
+ "loss": 0.8436,
1239
+ "step": 193
1240
+ },
1241
+ {
1242
+ "epoch": 0.53,
1243
+ "learning_rate": 9.516190074849134e-05,
1244
+ "loss": 0.9136,
1245
+ "step": 194
1246
+ },
1247
+ {
1248
+ "epoch": 0.53,
1249
+ "learning_rate": 9.428313199784556e-05,
1250
+ "loss": 1.0565,
1251
+ "step": 195
1252
+ },
1253
+ {
1254
+ "epoch": 0.53,
1255
+ "learning_rate": 9.340480595653047e-05,
1256
+ "loss": 0.9397,
1257
+ "step": 196
1258
+ },
1259
+ {
1260
+ "epoch": 0.54,
1261
+ "learning_rate": 9.252699064135758e-05,
1262
+ "loss": 0.9039,
1263
+ "step": 197
1264
+ },
1265
+ {
1266
+ "epoch": 0.54,
1267
+ "learning_rate": 9.164975402958834e-05,
1268
+ "loss": 0.9025,
1269
+ "step": 198
1270
+ },
1271
+ {
1272
+ "epoch": 0.54,
1273
+ "learning_rate": 9.077316405366981e-05,
1274
+ "loss": 1.0392,
1275
+ "step": 199
1276
+ },
1277
+ {
1278
+ "epoch": 0.54,
1279
+ "learning_rate": 8.989728859597424e-05,
1280
+ "loss": 0.8475,
1281
+ "step": 200
1282
+ },
1283
+ {
1284
+ "epoch": 0.54,
1285
+ "eval_loss": 1.3337310552597046,
1286
+ "eval_runtime": 119.0825,
1287
+ "eval_samples_per_second": 3.703,
1288
+ "eval_steps_per_second": 1.856,
1289
+ "step": 200
1290
+ },
1291
+ {
1292
+ "epoch": 0.55,
1293
+ "learning_rate": 8.902219548354209e-05,
1294
+ "loss": 1.0189,
1295
+ "step": 201
1296
+ },
1297
+ {
1298
+ "epoch": 0.55,
1299
+ "learning_rate": 8.814795248282974e-05,
1300
+ "loss": 0.9149,
1301
+ "step": 202
1302
+ },
1303
+ {
1304
+ "epoch": 0.55,
1305
+ "learning_rate": 8.727462729446167e-05,
1306
+ "loss": 0.8856,
1307
+ "step": 203
1308
+ },
1309
+ {
1310
+ "epoch": 0.56,
1311
+ "learning_rate": 8.640228754798773e-05,
1312
+ "loss": 0.8605,
1313
+ "step": 204
1314
+ },
1315
+ {
1316
+ "epoch": 0.56,
1317
+ "learning_rate": 8.553100079664598e-05,
1318
+ "loss": 0.9093,
1319
+ "step": 205
1320
+ },
1321
+ {
1322
+ "epoch": 0.56,
1323
+ "learning_rate": 8.466083451213144e-05,
1324
+ "loss": 0.8779,
1325
+ "step": 206
1326
+ },
1327
+ {
1328
+ "epoch": 0.56,
1329
+ "learning_rate": 8.379185607937126e-05,
1330
+ "loss": 0.9265,
1331
+ "step": 207
1332
+ },
1333
+ {
1334
+ "epoch": 0.57,
1335
+ "learning_rate": 8.292413279130624e-05,
1336
+ "loss": 1.049,
1337
+ "step": 208
1338
+ },
1339
+ {
1340
+ "epoch": 0.57,
1341
+ "learning_rate": 8.205773184367991e-05,
1342
+ "loss": 0.8172,
1343
+ "step": 209
1344
+ },
1345
+ {
1346
+ "epoch": 0.57,
1347
+ "learning_rate": 8.119272032983487e-05,
1348
+ "loss": 0.927,
1349
+ "step": 210
1350
+ },
1351
+ {
1352
+ "epoch": 0.57,
1353
+ "learning_rate": 8.03291652355172e-05,
1354
+ "loss": 1.0608,
1355
+ "step": 211
1356
+ },
1357
+ {
1358
+ "epoch": 0.58,
1359
+ "learning_rate": 7.94671334336891e-05,
1360
+ "loss": 0.8668,
1361
+ "step": 212
1362
+ },
1363
+ {
1364
+ "epoch": 0.58,
1365
+ "learning_rate": 7.860669167935028e-05,
1366
+ "loss": 0.9103,
1367
+ "step": 213
1368
+ },
1369
+ {
1370
+ "epoch": 0.58,
1371
+ "learning_rate": 7.774790660436858e-05,
1372
+ "loss": 0.8594,
1373
+ "step": 214
1374
+ },
1375
+ {
1376
+ "epoch": 0.59,
1377
+ "learning_rate": 7.689084471232001e-05,
1378
+ "loss": 0.8572,
1379
+ "step": 215
1380
+ },
1381
+ {
1382
+ "epoch": 0.59,
1383
+ "learning_rate": 7.603557237333877e-05,
1384
+ "loss": 0.956,
1385
+ "step": 216
1386
+ },
1387
+ {
1388
+ "epoch": 0.59,
1389
+ "learning_rate": 7.518215581897763e-05,
1390
+ "loss": 0.8796,
1391
+ "step": 217
1392
+ },
1393
+ {
1394
+ "epoch": 0.59,
1395
+ "learning_rate": 7.433066113707896e-05,
1396
+ "loss": 1.0585,
1397
+ "step": 218
1398
+ },
1399
+ {
1400
+ "epoch": 0.6,
1401
+ "learning_rate": 7.348115426665705e-05,
1402
+ "loss": 0.7626,
1403
+ "step": 219
1404
+ },
1405
+ {
1406
+ "epoch": 0.6,
1407
+ "learning_rate": 7.263370099279172e-05,
1408
+ "loss": 0.8566,
1409
+ "step": 220
1410
+ },
1411
+ {
1412
+ "epoch": 0.6,
1413
+ "eval_loss": 1.3307039737701416,
1414
+ "eval_runtime": 119.0797,
1415
+ "eval_samples_per_second": 3.703,
1416
+ "eval_steps_per_second": 1.856,
1417
+ "step": 220
1418
+ },
1419
+ {
1420
+ "epoch": 0.6,
1421
+ "learning_rate": 7.178836694153405e-05,
1422
+ "loss": 0.8049,
1423
+ "step": 221
1424
+ },
1425
+ {
1426
+ "epoch": 0.6,
1427
+ "learning_rate": 7.09452175748244e-05,
1428
+ "loss": 1.0561,
1429
+ "step": 222
1430
+ },
1431
+ {
1432
+ "epoch": 0.61,
1433
+ "learning_rate": 7.010431818542297e-05,
1434
+ "loss": 0.7266,
1435
+ "step": 223
1436
+ },
1437
+ {
1438
+ "epoch": 0.61,
1439
+ "learning_rate": 6.926573389185371e-05,
1440
+ "loss": 0.8773,
1441
+ "step": 224
1442
+ },
1443
+ {
1444
+ "epoch": 0.61,
1445
+ "learning_rate": 6.842952963336153e-05,
1446
+ "loss": 0.9103,
1447
+ "step": 225
1448
+ },
1449
+ {
1450
+ "epoch": 0.61,
1451
+ "learning_rate": 6.759577016488343e-05,
1452
+ "loss": 0.6977,
1453
+ "step": 226
1454
+ },
1455
+ {
1456
+ "epoch": 0.62,
1457
+ "learning_rate": 6.676452005203406e-05,
1458
+ "loss": 0.8085,
1459
+ "step": 227
1460
+ },
1461
+ {
1462
+ "epoch": 0.62,
1463
+ "learning_rate": 6.593584366610566e-05,
1464
+ "loss": 0.8944,
1465
+ "step": 228
1466
+ },
1467
+ {
1468
+ "epoch": 0.62,
1469
+ "learning_rate": 6.510980517908334e-05,
1470
+ "loss": 0.7846,
1471
+ "step": 229
1472
+ },
1473
+ {
1474
+ "epoch": 0.63,
1475
+ "learning_rate": 6.428646855867553e-05,
1476
+ "loss": 0.9049,
1477
+ "step": 230
1478
+ },
1479
+ {
1480
+ "epoch": 0.63,
1481
+ "learning_rate": 6.34658975633605e-05,
1482
+ "loss": 1.0148,
1483
+ "step": 231
1484
+ },
1485
+ {
1486
+ "epoch": 0.63,
1487
+ "learning_rate": 6.264815573744884e-05,
1488
+ "loss": 0.8781,
1489
+ "step": 232
1490
+ },
1491
+ {
1492
+ "epoch": 0.63,
1493
+ "learning_rate": 6.183330640616273e-05,
1494
+ "loss": 0.9242,
1495
+ "step": 233
1496
+ },
1497
+ {
1498
+ "epoch": 0.64,
1499
+ "learning_rate": 6.102141267073207e-05,
1500
+ "loss": 0.8635,
1501
+ "step": 234
1502
+ },
1503
+ {
1504
+ "epoch": 0.64,
1505
+ "learning_rate": 6.021253740350793e-05,
1506
+ "loss": 1.0117,
1507
+ "step": 235
1508
+ },
1509
+ {
1510
+ "epoch": 0.64,
1511
+ "learning_rate": 5.9406743243093807e-05,
1512
+ "loss": 0.9206,
1513
+ "step": 236
1514
+ },
1515
+ {
1516
+ "epoch": 0.64,
1517
+ "learning_rate": 5.8604092589494994e-05,
1518
+ "loss": 1.0006,
1519
+ "step": 237
1520
+ },
1521
+ {
1522
+ "epoch": 0.65,
1523
+ "learning_rate": 5.780464759928623e-05,
1524
+ "loss": 0.8629,
1525
+ "step": 238
1526
+ },
1527
+ {
1528
+ "epoch": 0.65,
1529
+ "learning_rate": 5.700847018079856e-05,
1530
+ "loss": 0.9166,
1531
+ "step": 239
1532
+ },
1533
+ {
1534
+ "epoch": 0.65,
1535
+ "learning_rate": 5.6215621989325e-05,
1536
+ "loss": 0.8463,
1537
+ "step": 240
1538
+ },
1539
+ {
1540
+ "epoch": 0.65,
1541
+ "eval_loss": 1.3288977146148682,
1542
+ "eval_runtime": 118.9998,
1543
+ "eval_samples_per_second": 3.706,
1544
+ "eval_steps_per_second": 1.857,
1545
+ "step": 240
1546
+ },
1547
+ {
1548
+ "epoch": 0.66,
1549
+ "learning_rate": 5.542616442234618e-05,
1550
+ "loss": 1.0178,
1551
+ "step": 241
1552
+ },
1553
+ {
1554
+ "epoch": 0.66,
1555
+ "learning_rate": 5.464015861477557e-05,
1556
+ "loss": 0.8584,
1557
+ "step": 242
1558
+ },
1559
+ {
1560
+ "epoch": 0.66,
1561
+ "learning_rate": 5.385766543422551e-05,
1562
+ "loss": 0.8194,
1563
+ "step": 243
1564
+ },
1565
+ {
1566
+ "epoch": 0.66,
1567
+ "learning_rate": 5.307874547629339e-05,
1568
+ "loss": 0.8743,
1569
+ "step": 244
1570
+ },
1571
+ {
1572
+ "epoch": 0.67,
1573
+ "learning_rate": 5.230345905986944e-05,
1574
+ "loss": 0.9445,
1575
+ "step": 245
1576
+ },
1577
+ {
1578
+ "epoch": 0.67,
1579
+ "learning_rate": 5.1531866222465466e-05,
1580
+ "loss": 1.0006,
1581
+ "step": 246
1582
+ },
1583
+ {
1584
+ "epoch": 0.67,
1585
+ "learning_rate": 5.0764026715565785e-05,
1586
+ "loss": 0.7993,
1587
+ "step": 247
1588
+ },
1589
+ {
1590
+ "epoch": 0.67,
1591
+ "learning_rate": 5.000000000000002e-05,
1592
+ "loss": 0.9364,
1593
+ "step": 248
1594
+ },
1595
+ {
1596
+ "epoch": 0.68,
1597
+ "learning_rate": 4.9239845241338435e-05,
1598
+ "loss": 0.8884,
1599
+ "step": 249
1600
+ },
1601
+ {
1602
+ "epoch": 0.68,
1603
+ "learning_rate": 4.848362130531039e-05,
1604
+ "loss": 0.9054,
1605
+ "step": 250
1606
+ },
1607
+ {
1608
+ "epoch": 0.68,
1609
+ "learning_rate": 4.7731386753245675e-05,
1610
+ "loss": 1.0429,
1611
+ "step": 251
1612
+ },
1613
+ {
1614
+ "epoch": 0.69,
1615
+ "learning_rate": 4.6983199837539705e-05,
1616
+ "loss": 0.8428,
1617
+ "step": 252
1618
+ },
1619
+ {
1620
+ "epoch": 0.69,
1621
+ "learning_rate": 4.6239118497142256e-05,
1622
+ "loss": 0.7732,
1623
+ "step": 253
1624
+ },
1625
+ {
1626
+ "epoch": 0.69,
1627
+ "learning_rate": 4.549920035307107e-05,
1628
+ "loss": 1.0696,
1629
+ "step": 254
1630
+ },
1631
+ {
1632
+ "epoch": 0.69,
1633
+ "learning_rate": 4.476350270394942e-05,
1634
+ "loss": 0.8644,
1635
+ "step": 255
1636
+ },
1637
+ {
1638
+ "epoch": 0.7,
1639
+ "learning_rate": 4.403208252156921e-05,
1640
+ "loss": 0.8967,
1641
+ "step": 256
1642
+ },
1643
+ {
1644
+ "epoch": 0.7,
1645
+ "learning_rate": 4.3304996446478854e-05,
1646
+ "loss": 0.7205,
1647
+ "step": 257
1648
+ },
1649
+ {
1650
+ "epoch": 0.7,
1651
+ "learning_rate": 4.2582300783597404e-05,
1652
+ "loss": 1.0014,
1653
+ "step": 258
1654
+ },
1655
+ {
1656
+ "epoch": 0.7,
1657
+ "learning_rate": 4.186405149785403e-05,
1658
+ "loss": 0.7683,
1659
+ "step": 259
1660
+ },
1661
+ {
1662
+ "epoch": 0.71,
1663
+ "learning_rate": 4.115030420985437e-05,
1664
+ "loss": 0.8781,
1665
+ "step": 260
1666
+ },
1667
+ {
1668
+ "epoch": 0.71,
1669
+ "eval_loss": 1.3258484601974487,
1670
+ "eval_runtime": 119.0026,
1671
+ "eval_samples_per_second": 3.706,
1672
+ "eval_steps_per_second": 1.857,
1673
+ "step": 260
1674
+ },
1675
+ {
1676
+ "epoch": 0.71,
1677
+ "learning_rate": 4.044111419157326e-05,
1678
+ "loss": 0.962,
1679
+ "step": 261
1680
+ },
1681
+ {
1682
+ "epoch": 0.71,
1683
+ "learning_rate": 3.973653636207437e-05,
1684
+ "loss": 0.8061,
1685
+ "step": 262
1686
+ },
1687
+ {
1688
+ "epoch": 0.72,
1689
+ "learning_rate": 3.903662528325759e-05,
1690
+ "loss": 0.9114,
1691
+ "step": 263
1692
+ },
1693
+ {
1694
+ "epoch": 0.72,
1695
+ "learning_rate": 3.834143515563358e-05,
1696
+ "loss": 0.9192,
1697
+ "step": 264
1698
+ },
1699
+ {
1700
+ "epoch": 0.72,
1701
+ "learning_rate": 3.7651019814126654e-05,
1702
+ "loss": 0.9397,
1703
+ "step": 265
1704
+ },
1705
+ {
1706
+ "epoch": 0.72,
1707
+ "learning_rate": 3.6965432723905735e-05,
1708
+ "loss": 0.9167,
1709
+ "step": 266
1710
+ },
1711
+ {
1712
+ "epoch": 0.73,
1713
+ "learning_rate": 3.628472697624422e-05,
1714
+ "loss": 0.9877,
1715
+ "step": 267
1716
+ },
1717
+ {
1718
+ "epoch": 0.73,
1719
+ "learning_rate": 3.5608955284408443e-05,
1720
+ "loss": 1.1038,
1721
+ "step": 268
1722
+ },
1723
+ {
1724
+ "epoch": 0.73,
1725
+ "learning_rate": 3.493816997957582e-05,
1726
+ "loss": 0.868,
1727
+ "step": 269
1728
+ },
1729
+ {
1730
+ "epoch": 0.73,
1731
+ "learning_rate": 3.427242300678213e-05,
1732
+ "loss": 0.7829,
1733
+ "step": 270
1734
+ },
1735
+ {
1736
+ "epoch": 0.74,
1737
+ "learning_rate": 3.361176592089919e-05,
1738
+ "loss": 0.8135,
1739
+ "step": 271
1740
+ },
1741
+ {
1742
+ "epoch": 0.74,
1743
+ "learning_rate": 3.295624988264224e-05,
1744
+ "loss": 0.8382,
1745
+ "step": 272
1746
+ },
1747
+ {
1748
+ "epoch": 0.74,
1749
+ "learning_rate": 3.2305925654608326e-05,
1750
+ "loss": 1.0243,
1751
+ "step": 273
1752
+ },
1753
+ {
1754
+ "epoch": 0.75,
1755
+ "learning_rate": 3.1660843597345135e-05,
1756
+ "loss": 0.7312,
1757
+ "step": 274
1758
+ },
1759
+ {
1760
+ "epoch": 0.75,
1761
+ "learning_rate": 3.1021053665451206e-05,
1762
+ "loss": 0.9365,
1763
+ "step": 275
1764
+ },
1765
+ {
1766
+ "epoch": 0.75,
1767
+ "learning_rate": 3.0386605403707346e-05,
1768
+ "loss": 0.7903,
1769
+ "step": 276
1770
+ },
1771
+ {
1772
+ "epoch": 0.75,
1773
+ "learning_rate": 2.975754794324015e-05,
1774
+ "loss": 0.8536,
1775
+ "step": 277
1776
+ },
1777
+ {
1778
+ "epoch": 0.76,
1779
+ "learning_rate": 2.913392999771718e-05,
1780
+ "loss": 0.993,
1781
+ "step": 278
1782
+ },
1783
+ {
1784
+ "epoch": 0.76,
1785
+ "learning_rate": 2.8515799859574588e-05,
1786
+ "loss": 0.7764,
1787
+ "step": 279
1788
+ },
1789
+ {
1790
+ "epoch": 0.76,
1791
+ "learning_rate": 2.7903205396277542e-05,
1792
+ "loss": 0.9057,
1793
+ "step": 280
1794
+ },
1795
+ {
1796
+ "epoch": 0.76,
1797
+ "eval_loss": 1.3229844570159912,
1798
+ "eval_runtime": 119.0121,
1799
+ "eval_samples_per_second": 3.706,
1800
+ "eval_steps_per_second": 1.857,
1801
+ "step": 280
1802
+ },
1803
+ {
1804
+ "epoch": 0.76,
1805
+ "learning_rate": 2.729619404661321e-05,
1806
+ "loss": 0.8637,
1807
+ "step": 281
1808
+ },
1809
+ {
1810
+ "epoch": 0.77,
1811
+ "learning_rate": 2.669481281701739e-05,
1812
+ "loss": 0.8564,
1813
+ "step": 282
1814
+ },
1815
+ {
1816
+ "epoch": 0.77,
1817
+ "learning_rate": 2.6099108277934103e-05,
1818
+ "loss": 0.9834,
1819
+ "step": 283
1820
+ },
1821
+ {
1822
+ "epoch": 0.77,
1823
+ "learning_rate": 2.5509126560209428e-05,
1824
+ "loss": 0.8363,
1825
+ "step": 284
1826
+ },
1827
+ {
1828
+ "epoch": 0.78,
1829
+ "learning_rate": 2.4924913351519084e-05,
1830
+ "loss": 0.8882,
1831
+ "step": 285
1832
+ },
1833
+ {
1834
+ "epoch": 0.78,
1835
+ "learning_rate": 2.4346513892830423e-05,
1836
+ "loss": 0.8547,
1837
+ "step": 286
1838
+ },
1839
+ {
1840
+ "epoch": 0.78,
1841
+ "learning_rate": 2.377397297489895e-05,
1842
+ "loss": 0.9304,
1843
+ "step": 287
1844
+ },
1845
+ {
1846
+ "epoch": 0.78,
1847
+ "learning_rate": 2.320733493479992e-05,
1848
+ "loss": 0.9409,
1849
+ "step": 288
1850
+ },
1851
+ {
1852
+ "epoch": 0.79,
1853
+ "learning_rate": 2.2646643652494692e-05,
1854
+ "loss": 0.9414,
1855
+ "step": 289
1856
+ },
1857
+ {
1858
+ "epoch": 0.79,
1859
+ "learning_rate": 2.2091942547432955e-05,
1860
+ "loss": 0.8788,
1861
+ "step": 290
1862
+ },
1863
+ {
1864
+ "epoch": 0.79,
1865
+ "learning_rate": 2.1543274575190188e-05,
1866
+ "loss": 0.8338,
1867
+ "step": 291
1868
+ },
1869
+ {
1870
+ "epoch": 0.79,
1871
+ "learning_rate": 2.100068222414121e-05,
1872
+ "loss": 0.7986,
1873
+ "step": 292
1874
+ },
1875
+ {
1876
+ "epoch": 0.8,
1877
+ "learning_rate": 2.0464207512170065e-05,
1878
+ "loss": 1.0324,
1879
+ "step": 293
1880
+ },
1881
+ {
1882
+ "epoch": 0.8,
1883
+ "learning_rate": 1.993389198341601e-05,
1884
+ "loss": 0.8743,
1885
+ "step": 294
1886
+ },
1887
+ {
1888
+ "epoch": 0.8,
1889
+ "learning_rate": 1.9409776705056516e-05,
1890
+ "loss": 0.8304,
1891
+ "step": 295
1892
+ },
1893
+ {
1894
+ "epoch": 0.81,
1895
+ "learning_rate": 1.8891902264127004e-05,
1896
+ "loss": 0.8021,
1897
+ "step": 296
1898
+ },
1899
+ {
1900
+ "epoch": 0.81,
1901
+ "learning_rate": 1.8380308764377842e-05,
1902
+ "loss": 0.9101,
1903
+ "step": 297
1904
+ },
1905
+ {
1906
+ "epoch": 0.81,
1907
+ "learning_rate": 1.787503582316864e-05,
1908
+ "loss": 0.8156,
1909
+ "step": 298
1910
+ },
1911
+ {
1912
+ "epoch": 0.81,
1913
+ "learning_rate": 1.7376122568400532e-05,
1914
+ "loss": 0.7932,
1915
+ "step": 299
1916
+ },
1917
+ {
1918
+ "epoch": 0.82,
1919
+ "learning_rate": 1.6883607635485877e-05,
1920
+ "loss": 0.9364,
1921
+ "step": 300
1922
+ },
1923
+ {
1924
+ "epoch": 0.82,
1925
+ "eval_loss": 1.3215992450714111,
1926
+ "eval_runtime": 118.9898,
1927
+ "eval_samples_per_second": 3.706,
1928
+ "eval_steps_per_second": 1.857,
1929
+ "step": 300
1930
+ },
1931
+ {
1932
+ "epoch": 0.82,
1933
+ "learning_rate": 1.6397529164356606e-05,
1934
+ "loss": 0.9039,
1935
+ "step": 301
1936
+ },
1937
+ {
1938
+ "epoch": 0.82,
1939
+ "learning_rate": 1.5917924796510587e-05,
1940
+ "loss": 0.9557,
1941
+ "step": 302
1942
+ },
1943
+ {
1944
+ "epoch": 0.82,
1945
+ "learning_rate": 1.544483167209664e-05,
1946
+ "loss": 0.8927,
1947
+ "step": 303
1948
+ },
1949
+ {
1950
+ "epoch": 0.83,
1951
+ "learning_rate": 1.4978286427038601e-05,
1952
+ "loss": 0.9724,
1953
+ "step": 304
1954
+ },
1955
+ {
1956
+ "epoch": 0.83,
1957
+ "learning_rate": 1.4518325190198078e-05,
1958
+ "loss": 0.9405,
1959
+ "step": 305
1960
+ },
1961
+ {
1962
+ "epoch": 0.83,
1963
+ "learning_rate": 1.406498358057683e-05,
1964
+ "loss": 0.9551,
1965
+ "step": 306
1966
+ },
1967
+ {
1968
+ "epoch": 0.84,
1969
+ "learning_rate": 1.3618296704558364e-05,
1970
+ "loss": 0.8297,
1971
+ "step": 307
1972
+ },
1973
+ {
1974
+ "epoch": 0.84,
1975
+ "learning_rate": 1.3178299153189366e-05,
1976
+ "loss": 0.8766,
1977
+ "step": 308
1978
+ },
1979
+ {
1980
+ "epoch": 0.84,
1981
+ "learning_rate": 1.2745024999500943e-05,
1982
+ "loss": 0.8472,
1983
+ "step": 309
1984
+ },
1985
+ {
1986
+ "epoch": 0.84,
1987
+ "learning_rate": 1.2318507795870138e-05,
1988
+ "loss": 0.7698,
1989
+ "step": 310
1990
+ },
1991
+ {
1992
+ "epoch": 0.85,
1993
+ "learning_rate": 1.1898780571421552e-05,
1994
+ "loss": 0.933,
1995
+ "step": 311
1996
+ },
1997
+ {
1998
+ "epoch": 0.85,
1999
+ "learning_rate": 1.1485875829469705e-05,
2000
+ "loss": 0.9372,
2001
+ "step": 312
2002
+ },
2003
+ {
2004
+ "epoch": 0.85,
2005
+ "learning_rate": 1.1079825545001888e-05,
2006
+ "loss": 0.6934,
2007
+ "step": 313
2008
+ },
2009
+ {
2010
+ "epoch": 0.85,
2011
+ "learning_rate": 1.0680661162202177e-05,
2012
+ "loss": 0.9019,
2013
+ "step": 314
2014
+ },
2015
+ {
2016
+ "epoch": 0.86,
2017
+ "learning_rate": 1.0288413592016343e-05,
2018
+ "loss": 1.0839,
2019
+ "step": 315
2020
+ },
2021
+ {
2022
+ "epoch": 0.86,
2023
+ "learning_rate": 9.903113209758096e-06,
2024
+ "loss": 0.9194,
2025
+ "step": 316
2026
+ },
2027
+ {
2028
+ "epoch": 0.86,
2029
+ "learning_rate": 9.524789852756954e-06,
2030
+ "loss": 0.8442,
2031
+ "step": 317
2032
+ },
2033
+ {
2034
+ "epoch": 0.87,
2035
+ "learning_rate": 9.153472818047625e-06,
2036
+ "loss": 0.8134,
2037
+ "step": 318
2038
+ },
2039
+ {
2040
+ "epoch": 0.87,
2041
+ "learning_rate": 8.789190860101225e-06,
2042
+ "loss": 0.8297,
2043
+ "step": 319
2044
+ },
2045
+ {
2046
+ "epoch": 0.87,
2047
+ "learning_rate": 8.43197218859858e-06,
2048
+ "loss": 0.9635,
2049
+ "step": 320
2050
+ },
2051
+ {
2052
+ "epoch": 0.87,
2053
+ "eval_loss": 1.3210258483886719,
2054
+ "eval_runtime": 119.0221,
2055
+ "eval_samples_per_second": 3.705,
2056
+ "eval_steps_per_second": 1.857,
2057
+ "step": 320
2058
+ },
2059
+ {
2060
+ "epoch": 0.87,
2061
+ "learning_rate": 8.081844466245737e-06,
2062
+ "loss": 0.7029,
2063
+ "step": 321
2064
+ },
2065
+ {
2066
+ "epoch": 0.88,
2067
+ "learning_rate": 7.738834806631711e-06,
2068
+ "loss": 0.898,
2069
+ "step": 322
2070
+ },
2071
+ {
2072
+ "epoch": 0.88,
2073
+ "learning_rate": 7.402969772128931e-06,
2074
+ "loss": 0.8886,
2075
+ "step": 323
2076
+ },
2077
+ {
2078
+ "epoch": 0.88,
2079
+ "learning_rate": 7.074275371836148e-06,
2080
+ "loss": 0.7764,
2081
+ "step": 324
2082
+ },
2083
+ {
2084
+ "epoch": 0.88,
2085
+ "learning_rate": 6.75277705956443e-06,
2086
+ "loss": 0.8431,
2087
+ "step": 325
2088
+ },
2089
+ {
2090
+ "epoch": 0.89,
2091
+ "learning_rate": 6.438499731865966e-06,
2092
+ "loss": 0.8315,
2093
+ "step": 326
2094
+ },
2095
+ {
2096
+ "epoch": 0.89,
2097
+ "learning_rate": 6.131467726106144e-06,
2098
+ "loss": 0.8022,
2099
+ "step": 327
2100
+ },
2101
+ {
2102
+ "epoch": 0.89,
2103
+ "learning_rate": 5.831704818578843e-06,
2104
+ "loss": 1.0034,
2105
+ "step": 328
2106
+ },
2107
+ {
2108
+ "epoch": 0.9,
2109
+ "learning_rate": 5.539234222665279e-06,
2110
+ "loss": 0.9289,
2111
+ "step": 329
2112
+ },
2113
+ {
2114
+ "epoch": 0.9,
2115
+ "learning_rate": 5.2540785870362815e-06,
2116
+ "loss": 1.1203,
2117
+ "step": 330
2118
+ },
2119
+ {
2120
+ "epoch": 0.9,
2121
+ "learning_rate": 4.976259993898502e-06,
2122
+ "loss": 0.8166,
2123
+ "step": 331
2124
+ },
2125
+ {
2126
+ "epoch": 0.9,
2127
+ "learning_rate": 4.705799957284351e-06,
2128
+ "loss": 0.872,
2129
+ "step": 332
2130
+ },
2131
+ {
2132
+ "epoch": 0.91,
2133
+ "learning_rate": 4.442719421385922e-06,
2134
+ "loss": 0.914,
2135
+ "step": 333
2136
+ },
2137
+ {
2138
+ "epoch": 0.91,
2139
+ "learning_rate": 4.187038758933204e-06,
2140
+ "loss": 0.9243,
2141
+ "step": 334
2142
+ },
2143
+ {
2144
+ "epoch": 0.91,
2145
+ "learning_rate": 3.938777769616275e-06,
2146
+ "loss": 0.7485,
2147
+ "step": 335
2148
+ },
2149
+ {
2150
+ "epoch": 0.91,
2151
+ "learning_rate": 3.6979556785522116e-06,
2152
+ "loss": 0.835,
2153
+ "step": 336
2154
+ },
2155
+ {
2156
+ "epoch": 0.92,
2157
+ "learning_rate": 3.4645911347961357e-06,
2158
+ "loss": 0.8814,
2159
+ "step": 337
2160
+ },
2161
+ {
2162
+ "epoch": 0.92,
2163
+ "learning_rate": 3.2387022098972153e-06,
2164
+ "loss": 0.7235,
2165
+ "step": 338
2166
+ },
2167
+ {
2168
+ "epoch": 0.92,
2169
+ "learning_rate": 3.0203063964990617e-06,
2170
+ "loss": 0.9117,
2171
+ "step": 339
2172
+ },
2173
+ {
2174
+ "epoch": 0.93,
2175
+ "learning_rate": 2.809420606985236e-06,
2176
+ "loss": 1.0049,
2177
+ "step": 340
2178
+ },
2179
+ {
2180
+ "epoch": 0.93,
2181
+ "eval_loss": 1.3204991817474365,
2182
+ "eval_runtime": 119.0009,
2183
+ "eval_samples_per_second": 3.706,
2184
+ "eval_steps_per_second": 1.857,
2185
+ "step": 340
2186
+ },
2187
+ {
2188
+ "epoch": 0.93,
2189
+ "learning_rate": 2.606061172169527e-06,
2190
+ "loss": 0.8719,
2191
+ "step": 341
2192
+ },
2193
+ {
2194
+ "epoch": 0.93,
2195
+ "learning_rate": 2.410243840031279e-06,
2196
+ "loss": 0.9375,
2197
+ "step": 342
2198
+ },
2199
+ {
2200
+ "epoch": 0.93,
2201
+ "learning_rate": 2.2219837744959283e-06,
2202
+ "loss": 0.8642,
2203
+ "step": 343
2204
+ },
2205
+ {
2206
+ "epoch": 0.94,
2207
+ "learning_rate": 2.0412955542606473e-06,
2208
+ "loss": 0.9535,
2209
+ "step": 344
2210
+ },
2211
+ {
2212
+ "epoch": 0.94,
2213
+ "learning_rate": 1.8681931716655221e-06,
2214
+ "loss": 0.8538,
2215
+ "step": 345
2216
+ },
2217
+ {
2218
+ "epoch": 0.94,
2219
+ "learning_rate": 1.7026900316098215e-06,
2220
+ "loss": 0.736,
2221
+ "step": 346
2222
+ },
2223
+ {
2224
+ "epoch": 0.94,
2225
+ "learning_rate": 1.5447989505140925e-06,
2226
+ "loss": 0.8917,
2227
+ "step": 347
2228
+ },
2229
+ {
2230
+ "epoch": 0.95,
2231
+ "learning_rate": 1.3945321553275326e-06,
2232
+ "loss": 0.7953,
2233
+ "step": 348
2234
+ },
2235
+ {
2236
+ "epoch": 0.95,
2237
+ "learning_rate": 1.2519012825812804e-06,
2238
+ "loss": 0.9073,
2239
+ "step": 349
2240
+ },
2241
+ {
2242
+ "epoch": 0.95,
2243
+ "learning_rate": 1.1169173774871478e-06,
2244
+ "loss": 0.8242,
2245
+ "step": 350
2246
+ },
2247
+ {
2248
+ "epoch": 0.96,
2249
+ "learning_rate": 9.89590893082426e-07,
2250
+ "loss": 1.0244,
2251
+ "step": 351
2252
+ },
2253
+ {
2254
+ "epoch": 0.96,
2255
+ "learning_rate": 8.699316894203224e-07,
2256
+ "loss": 0.8013,
2257
+ "step": 352
2258
+ },
2259
+ {
2260
+ "epoch": 0.96,
2261
+ "learning_rate": 7.579490328064265e-07,
2262
+ "loss": 0.8989,
2263
+ "step": 353
2264
+ },
2265
+ {
2266
+ "epoch": 0.96,
2267
+ "learning_rate": 6.536515950811395e-07,
2268
+ "loss": 1.013,
2269
+ "step": 354
2270
+ },
2271
+ {
2272
+ "epoch": 0.97,
2273
+ "learning_rate": 5.570474529481562e-07,
2274
+ "loss": 0.8283,
2275
+ "step": 355
2276
+ },
2277
+ {
2278
+ "epoch": 0.97,
2279
+ "learning_rate": 4.681440873489762e-07,
2280
+ "loss": 0.819,
2281
+ "step": 356
2282
+ },
2283
+ {
2284
+ "epoch": 0.97,
2285
+ "learning_rate": 3.869483828836007e-07,
2286
+ "loss": 1.0522,
2287
+ "step": 357
2288
+ },
2289
+ {
2290
+ "epoch": 0.97,
2291
+ "learning_rate": 3.134666272774034e-07,
2292
+ "loss": 1.0221,
2293
+ "step": 358
2294
+ },
2295
+ {
2296
+ "epoch": 0.98,
2297
+ "learning_rate": 2.477045108941978e-07,
2298
+ "loss": 0.93,
2299
+ "step": 359
2300
+ },
2301
+ {
2302
+ "epoch": 0.98,
2303
+ "learning_rate": 1.8966712629558957e-07,
2304
+ "loss": 0.901,
2305
+ "step": 360
2306
+ },
2307
+ {
2308
+ "epoch": 0.98,
2309
+ "eval_loss": 1.3202154636383057,
2310
+ "eval_runtime": 118.9855,
2311
+ "eval_samples_per_second": 3.706,
2312
+ "eval_steps_per_second": 1.857,
2313
+ "step": 360
2314
+ },
2315
+ {
2316
+ "epoch": 0.98,
2317
+ "learning_rate": 1.393589678466367e-07,
2318
+ "loss": 1.0046,
2319
+ "step": 361
2320
+ },
2321
+ {
2322
+ "epoch": 0.99,
2323
+ "learning_rate": 9.678393136776098e-08,
2324
+ "loss": 0.9131,
2325
+ "step": 362
2326
+ },
2327
+ {
2328
+ "epoch": 0.99,
2329
+ "learning_rate": 6.194531383307833e-08,
2330
+ "loss": 1.0747,
2331
+ "step": 363
2332
+ },
2333
+ {
2334
+ "epoch": 0.99,
2335
+ "learning_rate": 3.484581311511414e-08,
2336
+ "loss": 0.994,
2337
+ "step": 364
2338
+ },
2339
+ {
2340
+ "epoch": 0.99,
2341
+ "learning_rate": 1.5487527775848164e-08,
2342
+ "loss": 0.8788,
2343
+ "step": 365
2344
+ },
2345
+ {
2346
+ "epoch": 1.0,
2347
+ "learning_rate": 3.87195690421116e-09,
2348
+ "loss": 0.8329,
2349
+ "step": 366
2350
+ },
2351
+ {
2352
+ "epoch": 1.0,
2353
+ "learning_rate": 0.0,
2354
+ "loss": 0.963,
2355
+ "step": 367
2356
+ }
2357
+ ],
2358
+ "logging_steps": 1,
2359
+ "max_steps": 367,
2360
+ "num_train_epochs": 1,
2361
+ "save_steps": 500,
2362
+ "total_flos": 1.0382469155751199e+18,
2363
+ "trial_name": null,
2364
+ "trial_params": null
2365
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47a35f816d76e1ea2057790215ebd9422836cd4423897b9de07e3370b3a08306
3
+ size 4475