File size: 7,115 Bytes
a232772 c5afc23 a232772 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import streamlit as st
import pandas as pd
import torch
from transformers import BertTokenizer, AutoModelForSequenceClassification
from sklearn.metrics import roc_auc_score, roc_curve, confusion_matrix, classification_report, f1_score, precision_recall_fscore_support
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from tqdm import tqdm
def load_model_and_tokenizer():
try:
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained("CIS519PG/News_Classifier_Demo")
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
model.eval()
return model, tokenizer, device
except Exception as e:
st.error(f"Error loading model or tokenizer: {str(e)}")
return None, None, None
def preprocess_data(df):
try:
processed_data = []
for _, row in df.iterrows():
outlet = row["outlet"].strip().upper()
if outlet == "FOX NEWS":
outlet = "FOXNEWS"
elif outlet == "NBC NEWS":
outlet = "NBC"
processed_data.append({
"title": row["title"],
"outlet": outlet
})
return processed_data
except Exception as e:
st.error(f"Error preprocessing data: {str(e)}")
return None
def evaluate_model(model, tokenizer, device, test_dataset):
label2id = {"FOXNEWS": 0, "NBC": 1}
all_logits = []
references = []
batch_size = 16
progress_bar = st.progress(0)
for i in range(0, len(test_dataset), batch_size):
# Update progress
progress = min(i / len(test_dataset), 1.0)
progress_bar.progress(progress)
batch = test_dataset[i:i + batch_size]
texts = [item['title'] for item in batch]
encoded = tokenizer(
texts,
padding=True,
truncation=True,
max_length=128,
return_tensors="pt"
)
inputs = {k: v.to(device) for k, v in encoded.items()}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits.cpu().numpy()
true_labels = [label2id[item['outlet']] for item in batch]
all_logits.extend(logits)
references.extend(true_labels)
progress_bar.progress(1.0)
probabilities = torch.softmax(torch.tensor(all_logits), dim=1).numpy()
return references, probabilities
def plot_roc_curve(references, probabilities):
fpr, tpr, _ = roc_curve(references, probabilities[:, 1])
auc_score = roc_auc_score(references, probabilities[:, 1])
fig = go.Figure()
fig.add_trace(go.Scatter(x=fpr, y=tpr, name=f'ROC Curve (AUC = {auc_score:.4f})'))
fig.add_trace(go.Scatter(x=[0, 1], y=[0, 1], name='Random Guess', line=dict(dash='dash')))
fig.update_layout(
title='ROC Curve',
xaxis_title='False Positive Rate',
yaxis_title='True Positive Rate',
showlegend=True
)
return fig, auc_score
def plot_metrics_by_threshold(references, probabilities):
thresholds = np.arange(0.0, 1.0, 0.01)
metrics = {
'threshold': thresholds,
'f1': [],
'precision': [],
'recall': []
}
best_f1 = 0
best_threshold = 0
best_metrics = {}
for threshold in thresholds:
preds = (probabilities[:, 1] > threshold).astype(int)
f1 = f1_score(references, preds)
precision, recall, _, _ = precision_recall_fscore_support(references, preds, average='binary')
metrics['f1'].append(f1)
metrics['precision'].append(precision)
metrics['recall'].append(recall)
if f1 > best_f1:
best_f1 = f1
best_threshold = threshold
cm = confusion_matrix(references, preds)
report = classification_report(references, preds, target_names=['FOXNEWS', 'NBC'], digits=4)
best_metrics = {
'threshold': threshold,
'f1_score': f1,
'confusion_matrix': cm,
'classification_report': report
}
fig = go.Figure()
fig.add_trace(go.Scatter(x=thresholds, y=metrics['f1'], name='F1 Score'))
fig.add_trace(go.Scatter(x=thresholds, y=metrics['precision'], name='Precision'))
fig.add_trace(go.Scatter(x=thresholds, y=metrics['recall'], name='Recall'))
fig.update_layout(
title='Metrics by Threshold',
xaxis_title='Threshold',
yaxis_title='Score',
showlegend=True
)
return fig, best_metrics
def plot_confusion_matrix(cm):
labels = ['FOXNEWS', 'NBC']
annotations = []
for i in range(len(labels)):
for j in range(len(labels)):
annotations.append(
dict(
text=str(cm[i, j]),
x=labels[j],
y=labels[i],
showarrow=False,
font=dict(color='white' if cm[i, j] > cm.max()/2 else 'black')
)
)
fig = go.Figure(data=go.Heatmap(
z=cm,
x=labels,
y=labels,
colorscale='Blues',
showscale=True
))
fig.update_layout(
title='Confusion Matrix',
xaxis_title='Predicted Label',
yaxis_title='True Label',
annotations=annotations
)
return fig
def main():
st.title("News Classifier Model Evaluation")
uploaded_file = st.file_uploader("Upload your test dataset (CSV)", type=['csv'])
if uploaded_file is not None:
df = pd.read_csv(uploaded_file)
st.write("Preview of uploaded data:")
st.dataframe(df.head())
model, tokenizer, device = load_model_and_tokenizer()
if model and tokenizer:
test_dataset = preprocess_data(df)
if test_dataset:
st.write(f"Total examples: {len(test_dataset)}")
with st.spinner('Evaluating model...'):
references, probabilities = evaluate_model(model, tokenizer, device, test_dataset)
roc_fig, auc_score = plot_roc_curve(references, probabilities)
st.plotly_chart(roc_fig)
st.metric("AUC-ROC Score", f"{auc_score:.4f}")
metrics_fig, best_metrics = plot_metrics_by_threshold(references, probabilities)
st.plotly_chart(metrics_fig)
st.subheader("Best Threshold Evaluation")
col1, col2 = st.columns(2)
with col1:
st.metric("Best Threshold", f"{best_metrics['threshold']:.2f}")
with col2:
st.metric("Best F1 Score", f"{best_metrics['f1_score']:.4f}")
st.subheader("Confusion Matrix")
cm_fig = plot_confusion_matrix(best_metrics['confusion_matrix'])
st.plotly_chart(cm_fig)
st.subheader("Classification Report")
st.text(best_metrics['classification_report'])
if __name__ == "__main__":
main() |