CHIH-HUNG's picture
Update README.md
71dc742
|
raw
history blame
2.57 kB
metadata
license: llama2
datasets:
  - garage-bAInd/Open-Platypus

Model Card for Model ID

在llama-2-13b上使用garage-bAInd/Open-Platypus資料集進行訓練,總資料筆數約2.5w + ccp

Fine-Tuning Information

  • GPU: RTX4090 (single core / 24564MiB)
  • model: meta-llama/Llama-2-13b-hf
  • dataset: garage-bAInd/Open-Platypus (共約2.5w筆訓練集) + ccp (約1200筆)
  • peft_type: LoRA
  • lora_rank: 8
  • lora_target: gate_proj, up_proj, down_proj
  • per_device_train_batch_size: 8
  • gradient_accumulation_steps: 8
  • learning_rate : 5e-5
  • epoch: 1
  • precision: bf16
  • quantization: load_in_4bit

Fine-Tuning Detail

  • train_loss: 0.67
  • train_runtime: 4:07:24 (use deepspeed)

Evaluation

  • 評估結果來自HuggingFaceH4/open_llm_leaderboard
  • 與Llama-2-13b比較4種Benchmark,包含ARCHellaSwagMMLUTruthfulQA
Model Average ARC HellaSwag MMLU TruthfulQA
meta-llama/Llama-2-13b-hf 56.9 58.11 80.97 54.34 34.17
meta-llama/Llama-2-13b-chat-hf 59.93 59.04 81.94 54.64 44.12
Open-Orca/OpenOrca-Platypus2-13B 63.19 61.52 82.27 58.85 50.11
CHIH-HUNG/llama-2-13b-Open_Platypus_and_ccp_2.6w 59.41 58.96 82.51 56.12 40.07

How to convert dataset to json

  • load_dataset中輸入資料集名稱,並且在take中輸入要取前幾筆資料
  • 觀察該資料集的欄位名稱,填入example欄位中(例如instruction、input、output)
  • 最後指定json檔儲存位置 (json_filename)
import json
from datasets import load_dataset

# 讀取數據集,take可以取得該數據集前n筆資料
dataset = load_dataset("garage-bAInd/Open-Platypus", split="train", streaming=True)

# 提取所需欄位並建立新的字典列表
extracted_data = []
for example in dataset:
    extracted_example = {
        "instruction": example["instruction"],
        "input": example["input"],
        "output": example["output"]
    }
    extracted_data.append(extracted_example)

# 指定 JSON 文件名稱
json_filename = "Open-Platypus.json"

# 寫入 JSON 文件
with open(json_filename, "w") as json_file:
    json.dump(extracted_data, json_file, indent=4)

print(f"數據已提取並保存為 {json_filename}")