metadata
license: llama2
datasets:
- garage-bAInd/Open-Platypus
Model Card for Model ID
在llama-2-13b上使用garage-bAInd/Open-Platypus資料集進行訓練,總資料筆數約2.5w + ccp
Fine-Tuning Information
- GPU: RTX4090 (single core / 24564MiB)
- model: meta-llama/Llama-2-13b-hf
- dataset: garage-bAInd/Open-Platypus (共約2.5w筆訓練集) + ccp (約1200筆)
- peft_type: LoRA
- lora_rank: 8
- lora_target: gate_proj, up_proj, down_proj
- per_device_train_batch_size: 8
- gradient_accumulation_steps: 8
- learning_rate : 5e-5
- epoch: 1
- precision: bf16
- quantization: load_in_4bit
Fine-Tuning Detail
- train_loss: 0.67
- train_runtime: 4:07:24 (use deepspeed)
Evaluation
- 評估結果來自HuggingFaceH4/open_llm_leaderboard
- 與Llama-2-13b比較4種Benchmark,包含ARC、HellaSwag、MMLU、TruthfulQA
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA |
---|---|---|---|---|---|
meta-llama/Llama-2-13b-hf | 56.9 | 58.11 | 80.97 | 54.34 | 34.17 |
meta-llama/Llama-2-13b-chat-hf | 59.93 | 59.04 | 81.94 | 54.64 | 44.12 |
Open-Orca/OpenOrca-Platypus2-13B | 63.19 | 61.52 | 82.27 | 58.85 | 50.11 |
CHIH-HUNG/llama-2-13b-Open_Platypus_and_ccp_2.6w | 59.41 | 58.96 | 82.51 | 56.12 | 40.07 |
How to convert dataset to json
- 在load_dataset中輸入資料集名稱,並且在take中輸入要取前幾筆資料
- 觀察該資料集的欄位名稱,填入example欄位中(例如instruction、input、output)
- 最後指定json檔儲存位置 (json_filename)
import json
from datasets import load_dataset
# 讀取數據集,take可以取得該數據集前n筆資料
dataset = load_dataset("garage-bAInd/Open-Platypus", split="train", streaming=True)
# 提取所需欄位並建立新的字典列表
extracted_data = []
for example in dataset:
extracted_example = {
"instruction": example["instruction"],
"input": example["input"],
"output": example["output"]
}
extracted_data.append(extracted_example)
# 指定 JSON 文件名稱
json_filename = "Open-Platypus.json"
# 寫入 JSON 文件
with open(json_filename, "w") as json_file:
json.dump(extracted_data, json_file, indent=4)
print(f"數據已提取並保存為 {json_filename}")