CHIH-HUNG's picture
Update README.md
ef7ca44
---
license: llama2
datasets:
- huangyt/FINETUNE2
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
在llama-2-13b上使用huangyt/FINETUNE2資料集進行訓練,總資料筆數約3w
# Fine-Tuning Information
- **GPU:** RTX4090 (single core / 24564MiB)
- **model:** meta-llama/Llama-2-13b-hf
- **dataset:** huangyt/FINETUNE2 (共約3w筆訓練集)
- **peft_type:** LoRA
- **lora_rank:** 8
- **lora_target:** q_proj, v_proj
- **per_device_train_batch_size:** 8
- **gradient_accumulation_steps:** 8
- **learning_rate :** 5e-5
- **epoch:** 1
- **precision:** bf16
- **quantization:** load_in_4bit
# Fine-Tuning Detail
- **train_loss:** 0.67
- **train_runtime:** 3:27:00 (use deepspeed)
# Evaluation
- 評估結果來自**HuggingFaceH4/open_llm_leaderboard**
- 與Llama-2-13b比較4種Benchmark,包含**ARC****HellaSwag****MMLU****TruthfulQA**
| Model |Average| ARC |HellaSwag| MMLU | TruthfulQA |
|-----------------------------------------------------|-------|-------|---------|-------|------------|
|meta-llama/Llama-2-13b-hf | 56.9 | 58.11 | 80.97 | 54.34 | 34.17 |
|meta-llama/Llama-2-13b-chat-hf | 59.93 | 59.04 | 81.94 | 54.64 | 44.12 |
|CHIH-HUNG/llama-2-13b-FINETUNE2_3w-q_k_v_o_proj | 58.21 | 58.53 | 82.47 | 53.9 | 37.92 |
|CHIH-HUNG/llama-2-13b-FINETUNE2_3w | 58.34 | 58.62 | 82.32 | 54.25 | 38.17 |
|CHIH-HUNG/llama-2-13b-FINETUNE2_3w-gate_up_down_proj | 58.65 | 57.42 | 82.42 | 55.57 | 39.19 |
# How to convert dataset to json
-**load_dataset**中輸入資料集名稱,並且在**take**中輸入要取前幾筆資料
- 觀察該資料集的欄位名稱,填入**example**欄位中(例如system_prompt、question、response)
- 最後指定json檔儲存位置 (**json_filename**)
```py
import json
from datasets import load_dataset
# 讀取數據集,take可以取得該數據集前n筆資料
dataset = load_dataset("huangyt/FINETUNE2", split="train", streaming=True)
# 提取所需欄位並建立新的字典列表
extracted_data = []
for example in dataset:
extracted_example = {
"instruction": example["instruction"],
"input": example["input"],
"output": example["output"]
}
extracted_data.append(extracted_example)
# 指定 JSON 文件名稱
json_filename = "huangyt_FINETUNE2.json"
# 寫入 JSON 文件
with open(json_filename, "w") as json_file:
json.dump(extracted_data, json_file, indent=4)
print(f"數據已提取並保存為 {json_filename}")
```