File size: 10,497 Bytes
f008976
1745070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f008976
1745070
 
 
 
 
 
f008976
1745070
8ef8509
1745070
 
 
0bd19df
1745070
4555fd6
95a17b6
1745070
 
 
 
 
0bd19df
 
 
 
 
 
 
 
1745070
 
 
 
 
 
 
 
 
 
0bd19df
1745070
 
 
 
 
0bd19df
 
1745070
 
 
 
0bd19df
1745070
 
 
 
 
0bd19df
 
1745070
 
 
 
0bd19df
1745070
 
 
 
 
0bd19df
 
1745070
 
 
 
 
 
 
 
0bd19df
1745070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bd19df
 
1745070
0bd19df
1745070
 
 
 
 
 
 
0bd19df
1745070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bd19df
 
 
1745070
 
 
0bd19df
1745070
 
 
 
 
 
 
 
 
 
 
 
 
0bd19df
 
0944b15
 
 
 
 
 
 
 
0bd19df
 
 
1745070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bd19df
1745070
 
 
 
0bd19df
1745070
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
---
language: fr
datasets:
- etalab-ia/piaf
- fquad
- lincoln/newsquadfr
- pragnakalp/squad_v2_french_translated
widget:
- text: Combien de personnes utilisent le français tous les jours ?
  context: >-
    Le français est une langue indo-européenne de la famille des langues romanes
    dont les locuteurs sont appelés francophones. Elle est parfois surnommée la
    langue de Molière.  Le français est parlé, en 2023, sur tous les continents
    par environ 321 millions de personnes : 235 millions l'emploient
    quotidiennement et 90 millions en sont des locuteurs natifs. En 2018, 80
    millions d'élèves et étudiants s'instruisent en français dans le monde.
    Selon l'Organisation internationale de la francophonie (OIF), il pourrait y
    avoir 700 millions de francophones sur Terre en 2050.
license: cc-by-4.0
metrics:
- f1
- exact_match
library_name: transformers
pipeline_tag: question-answering
co2_eq_emissions: 200
---

# Model Card for QAmembert-large

## Model Description

We present **QAmemBERT**, which is a [CamemBERT large](https://huggingface.co/camembert/camembert-large) fine-tuned for the Question-Answering task for the French language on four French Q&A datasets composed of contexts and questions with their answers inside the context (= SQuAD 1.0 format) but also contexts and questions with their answers not inside the context (= SQuAD 2.0 format).
All these datasets were concatenated into a single dataset that we called [frenchQA](https://huggingface.co/datasets/CATIE-AQ/frenchQA).
This represents a total of over **221,348 context/question/answer triplets used to finetune this model and 6,376 to test it**.  
Our methodology is described in a blog post available in [English](https://blog.vaniila.ai/en/QA_en/) or [French](https://blog.vaniila.ai/QA/).

## Datasets

| Dataset     | Format      | Train split | Dev split   | Test split  |
| ----------- | ----------- | ----------- | ----------- | ----------- |
| [piaf](https://www.data.gouv.fr/en/datasets/piaf-le-dataset-francophone-de-questions-reponses/)| SQuAD 1.0    | 9 224 Q & A  | X  | X  |  
| piaf_v2| SQuAD 2.0    | 9 224 Q & A  | X  | X  |         
| [fquad](https://fquad.illuin.tech/)| SQuAD 1.0    | 20 731 Q & A | 3 188 Q & A  (not used in training because it serves as a test dataset) | 2 189 Q & A (not used in our work because not freely available)|         
| fquad_v2 | SQuAD 2.0    | 20 731 Q & A | 3 188 Q & A  (not used in training because it serves as a test dataset) | X |         
| [lincoln/newsquadfr](https://huggingface.co/datasets/lincoln/newsquadfr) | SQuAD 1.0    | 1 650 Q & A  | 455 Q & A (not used in our work) | X |           
| lincoln/newsquadfr_v2 | SQuAD 2.0    | 1 650 Q & A  | 455 Q & A (not used in our work) | X |         
| [pragnakalp/squad_v2_french_translated](https://huggingface.co/datasets/pragnakalp/squad_v2_french_translated)| SQuAD 2.0    | 79 069 Q & A  | X  | X  |         
| pragnakalp/squad_v2_french_translated_v2| SQuAD 2.0    | 79 069 Q & A  | X  | X  |

All these datasets were concatenated into a single dataset that we called [frenchQA](https://huggingface.co/datasets/CATIE-AQ/frenchQA).


## Evaluation results

The evaluation was carried out using the [**evaluate**](https://pypi.org/project/evaluate/) python package.

### FQuaD 1.0 (validation)

The metric used is SQuAD 1.0.

| Model       | Exact_match | F1-score    |
| ----------- | ----------- | ----------- |
| [etalab-ia/camembert-base-squadFR-fquad-piaf](https://huggingface.co/etalab-ia/camembert-base-squadFR-fquad-piaf) | 53.60       | 78.09       |
| QAmembert (previous version)   | 54.26       | 77.87       |
| [QAmembert (version on HF)](https://huggingface.co/CATIE-AQ/QAmembert)   | 53.98       | 78.00       |
| QAmembert-large  | **55.95**       | **81.05**       |


### qwant/squad_fr (validation)

The metric used is SQuAD 1.0.

| Model       | Exact_match | F1-score    |
| ----------- | ----------- | ----------- |
| [etalab-ia/camembert-base-squadFR-fquad-piaf](https://huggingface.co/etalab-ia/camembert-base-squadFR-fquad-piaf) | 60.17       | 78.27       |
| QAmembert (previous version)   | 60.40       | 77.27       |
| [QAmembert (version on HF)](https://huggingface.co/CATIE-AQ/QAmembert)   |  60.95       | 77.30       |
| QAmembert-large  | **65.58**       | **81.74**       |


### frenchQA

This dataset includes question with no answers in the context. The metric used is SQuAD 2.0.

| Model       | Exact_match | F1-score    | Answer_f1 | NoAnswer_f1 |
| ----------- | ----------- | ----------- | ----------- | ----------- |
| [etalab-ia/camembert-base-squadFR-fquad-piaf](https://huggingface.co/etalab-ia/camembert-base-squadFR-fquad-piaf) | n/a       | n/a       | n/a       | n/a       |
| QAmembert (previous version)   | 60.28       | 71.29       | 75.92 | 66.65
| [QAmembert (version on HF)](https://huggingface.co/CATIE-AQ/QAmembert)   |  **77.14**       | 86.88       | 75.66 | 98.11
| QAmembert-large  | **77.14**       | **88.74**       | **78.83** | **98.65**


## Usage
### Example with answer in the context

```python
from transformers import pipeline

qa = pipeline('question-answering', model='CATIE-AQ/QAmembert-large', tokenizer='CATIE-AQ/QAmembert-large')

result = qa({
    'question': "Combien de personnes utilisent le français tous les jours ?",
    'context': "Le français est une langue indo-européenne de la famille des langues romanes dont les locuteurs sont appelés francophones. Elle est parfois surnommée la langue de Molière.  Le français est parlé, en 2023, sur tous les continents par environ 321 millions de personnes : 235 millions l'emploient quotidiennement et 90 millions en sont des locuteurs natifs. En 2018, 80 millions d'élèves et étudiants s'instruisent en français dans le monde. Selon l'Organisation internationale de la francophonie (OIF), il pourrait y avoir 700 millions de francophones sur Terre en 2050."
})

if result['score'] < 0.01:
    print("La réponse n'est pas dans le contexte fourni.")
else :
    print(result['answer'])
```
```python
235 millions
```
```python
# details
result
{'score': 0.9876325726509094,
 'start': 268,
 'end': 281,
 'answer': ' 235 millions'}
```


### Example with answer not in the context
```python
from transformers import pipeline

qa = pipeline('question-answering', model='CATIE-AQ/QAmembert-large', tokenizer='CATIE-AQ/QAmembert-large')

result = qa({
    'question': "Quel est le meilleur vin du monde ?",
    'context': "La tour Eiffel est une tour de fer puddlé de 330 m de hauteur (avec antennes) située à Paris, à l’extrémité nord-ouest du parc du Champ-de-Mars en bordure de la Seine dans le 7e arrondissement. Son adresse officielle est 5, avenue Anatole-France.  
Construite en deux ans par Gustave Eiffel et ses collaborateurs pour l'Exposition universelle de Paris de 1889, célébrant le centenaire de la Révolution française, et initialement nommée « tour de 300 mètres », elle est devenue le symbole de la capitale française et un site touristique de premier plan : il s’agit du quatrième site culturel français payant le plus visité en 2016, avec 5,9 millions de visiteurs. Depuis son ouverture au public, elle a accueilli plus de 300 millions de visiteurs."
})

if result['score'] < 0.01:
    print("La réponse n'est pas dans le contexte fourni.")
else :
    print(result['answer'])
```
```python
La réponse n'est pas dans le contexte fourni.
```
```python
# details
result
{'score': 1.1262776822285048e-10,
 'start': 735,
 'end': 746,
 'answer': 'visiteurs.'}
```


## Environmental Impact

*Carbon emissions were estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.*

- **Hardware Type:** A100 PCIe 40/80GB
- **Hours used:** 11h and 12min
- **Cloud Provider:** Private Infrastructure
- **Carbon Efficiency (kg/kWh):** 0.076kg (estimated from [electricitymaps](https://app.electricitymaps.com/zone/FR) ; we take the average carbon intensity in France for the month of March 2023, as we are unable to use the data for the day of training, which are not available.)
- **Carbon Emitted** *(Power consumption x Time x Carbon produced based on location of power grid)*: 0.20 kg eq. CO2


## Citations

### QAmemBERT
```
@misc {qamembert2023,  
    author       = { {ALBAR, Boris and BEDU, Pierre and BOURDOIS, Loïck} },  
    organization  = { {Centre Aquitain des Technologies de l'Information et Electroniques} },  
    title        = { QAmembert (Revision 9685bc3) },  
    year         = 2023,  
    url          = { https://huggingface.co/CATIE-AQ/QAmembert-large },  
    doi          = { 10.57967/hf/0821 },  
    publisher    = { Hugging Face }  
}
```

### PIAF
```
@inproceedings{KeraronLBAMSSS20,
  author    = {Rachel Keraron and
               Guillaume Lancrenon and
               Mathilde Bras and
               Fr{\'{e}}d{\'{e}}ric Allary and
               Gilles Moyse and
               Thomas Scialom and
               Edmundo{-}Pavel Soriano{-}Morales and
               Jacopo Staiano},
  title     = {Project {PIAF:} Building a Native French Question-Answering Dataset},
  booktitle = {{LREC}},
  pages     = {5481--5490},
  publisher = {European Language Resources Association},
  year      = {2020}
}

```

### FQuAD
```
@article{dHoffschmidt2020FQuADFQ,
  title={FQuAD: French Question Answering Dataset},
  author={Martin d'Hoffschmidt and Maxime Vidal and Wacim Belblidia and Tom Brendl'e and Quentin Heinrich},
  journal={ArXiv},
  year={2020},
  volume={abs/2002.06071}
}
```

### lincoln/newsquadfr
```
Hugging Face repository: https://huggingface.co/datasets/lincoln/newsquadfr
```

### pragnakalp/squad_v2_french_translated
```
Hugging Face repository: https://huggingface.co/datasets/pragnakalp/squad_v2_french_translated
```

### CamemBERT
```
@inproceedings{martin2020camembert,
  title={CamemBERT: a Tasty French Language Model},
  author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
  booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
  year={2020}
}
```

## License
 [cc-by-4.0](https://creativecommons.org/licenses/by/4.0/deed.en)