File size: 9,502 Bytes
a0e4338 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
# Copyright 2024 CATIE. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modification to the original version from Unsloth:
# - return the z-loss
# - support for torch.compile
import triton
import triton.language as tl
import torch
MAX_FUSED_SIZE = 65536
next_power_of_2 = triton.next_power_of_2
def calculate_settings(n):
BLOCK_SIZE = next_power_of_2(n)
if BLOCK_SIZE > MAX_FUSED_SIZE:
raise RuntimeError(f"Cannot launch Triton kernel since n = {n} exceeds "\
f"the maximum CUDA blocksize = {MAX_FUSED_SIZE}.")
num_warps = 4
if BLOCK_SIZE >= 32768: num_warps = 32
elif BLOCK_SIZE >= 8192: num_warps = 16
elif BLOCK_SIZE >= 2048: num_warps = 8
return BLOCK_SIZE, num_warps
@triton.jit
def _cross_entropy_forward(logits_ptr, logits_row_stride,
loss_ptr,
lse_ptr,
labels_ptr,
n_cols,
BLOCK_SIZE: tl.constexpr,
IS_EVEN: tl.constexpr):
"""
Cross Entropy Loss = 1/n sum [ -yi log(Pi) ]
Pi = exp(xi) / sum(exp(xi))
CE_i = -y log(p) = -y log[ exp(x) / sum(exp(x)) ]
= -y [ x - log[sum(exp(x))] ]
= y * (log[sum(exp(x))] - x)
If y == 0: CE_i = 0
If y == 1: CE_i = logsumexp - x
"""
row_idx = tl.program_id(0)
logits_ptr += row_idx * logits_row_stride
loss_ptr += row_idx
lse_ptr += row_idx
labels_ptr += row_idx
col_offsets = tl.arange(0, BLOCK_SIZE)
mask = col_offsets < n_cols
# TODO: Fixup int32 locations to int64
label_idx = tl.load(labels_ptr).to(tl.int32)
if IS_EVEN:
logits = tl.load(logits_ptr + col_offsets).to(tl.float32)
else:
logits = tl.load(logits_ptr + col_offsets, mask=mask, other=-float("inf")).to(tl.float32)
max_logits = tl.max(logits, 0)
# Maximum stops overflow
lse = tl.log(tl.sum(tl.exp(logits - max_logits), 0)) + max_logits
tl.store(lse_ptr, lse)
if label_idx != -100:
logits_label = tl.load(logits_ptr + label_idx).to(tl.float32)
loss = lse - logits_label
else:
loss = 0.0
tl.store(loss_ptr, loss)
@triton.jit
def _cross_entropy_backward(logits_ptr, logits_row_stride,
dinputs_ptr, dinputs_row_stride,
dloss_ptr, dloss_row_stride,
dzloss_ptr, dzloss_row_stride,
lse_ptr,
labels_ptr,
n_cols,
BLOCK_SIZE: tl.constexpr,
USE_Z_LOSS: tl.constexpr,
IS_EVEN: tl.constexpr):
"""
CE_i = -y log(P) = y * (log[sum(exp(x))] - x)
dC/dx = d/dx (y * log[sum(exp(x))] - x * y)
From https://en.wikipedia.org/wiki/LogSumExp
d/dx logsumexp = exp(x) / sum(exp(x)) = softmax(x)
dC/dx = y * exp(x) / sum(exp(x)) - d/dx (x * y)
dC/dx = y * exp[ log[exp(x) / sum(exp(x))] ] using x = exp(log(x)) trick
dC/dx = y * exp[x - logsumexp] - d/dx (x * y)
If y == 0: dC/dx = 0
If y == 1 and x == label: dC/dlabel = exp[x - logsumexp] - 1
If y == 1 and x != label: dC/dx = exp[x - logsumexp]
"""
row_idx = tl.program_id(0)
logits_ptr += row_idx * logits_row_stride
dinputs_ptr += row_idx * dinputs_row_stride
dloss_ptr += row_idx * dloss_row_stride
dzloss_ptr += row_idx * dzloss_row_stride
col_offsets = tl.arange(0, BLOCK_SIZE)
mask = col_offsets < n_cols
# TODO: Fixup int32 locations to int64
label_idx = tl.load(labels_ptr + row_idx).to(tl.int32)
if label_idx != -100:
dloss = tl.load(dloss_ptr)
dzloss = tl.load(dzloss_ptr)
else:
dloss = 0.0
dzloss = 0.0
if IS_EVEN:
logits = tl.load(logits_ptr + col_offsets).to(tl.float32)
else:
logits = tl.load(logits_ptr + col_offsets, mask=mask, other=0).to(tl.float32)
lse = tl.load(lse_ptr + row_idx)
probs = tl.exp(logits - lse)
probs = tl.where(col_offsets == label_idx, probs - 1.0, probs)
din = dloss * probs
# Z_loss
if USE_Z_LOSS:
if label_idx != -100:
dzloss = tl.load(dzloss_ptr)
else:
dzloss = 0.0
row_minus_max = logits
numerator = tl.exp(row_minus_max)
denominator = tl.sum(numerator, axis=0)
softmax_output = numerator / denominator
din += softmax_output * dzloss
if IS_EVEN:
tl.store(dinputs_ptr + col_offsets, din)
else:
tl.store(dinputs_ptr + col_offsets, din, mask=mask)
# Wrapper for triton kernel for torch.compile - should be unecessary for PyTorch 2.3 ?
torch.library.define("flasht5::cross_entropy_triton_fwd", "(Tensor logits, Tensor labels, int n_cols, int n_rows, int BLOCK_SIZE, int num_warps) -> (Tensor, Tensor)")
@torch.library.impl("flasht5::cross_entropy_triton_fwd", "default")
def cross_entropy_triton_fwd(logits, labels, n_cols, n_rows, BLOCK_SIZE, num_warps):
losses = torch.empty(n_rows, dtype=torch.float32, device=logits.device)
logsumexp = torch.empty(n_rows, dtype=torch.float32, device=logits.device)
_cross_entropy_forward[(n_rows,)](
logits, logits.stride(0),
losses,
logsumexp,
labels,
n_cols,
BLOCK_SIZE = BLOCK_SIZE,
IS_EVEN=((n_cols % BLOCK_SIZE) == 0),
num_warps = num_warps,
)
return losses, logsumexp
@torch.library.impl_abstract("flasht5::cross_entropy_triton_fwd", cross_entropy_triton_fwd)
def cross_entropy_triton_fwd_abstract(logits, labels, n_cols, n_rows, BLOCK_SIZE, num_warps):
losses = torch.empty(n_rows, dtype=torch.float32, device=logits.device)
logsumexp = torch.empty(n_rows, dtype=torch.float32, device=logits.device)
return losses, logsumexp
torch.library.define("flasht5::cross_entropy_triton_bwd", "(Tensor dlosses, Tensor dlogsumexp, Tensor logits, Tensor logsumexp, Tensor labels, float z_loss_factor, int n_cols, int n_rows, int BLOCK_SIZE, int num_warps) -> Tensor")
@torch.library.impl("flasht5::cross_entropy_triton_bwd", "default")
def cross_entropy_triton_bwd(dlosses, dlogsumexp, logits, logsumexp, labels, z_loss_factor, n_cols, n_rows, BLOCK_SIZE, num_warps):
dinputs = torch.empty_like(logits)
_cross_entropy_backward[(n_rows,)](
logits, logits.stride(0),
dinputs, dinputs.stride(0),
dlosses, dlosses.stride(0),
dlogsumexp, dlogsumexp.stride(0),
logsumexp,
labels,
n_cols,
BLOCK_SIZE = BLOCK_SIZE,
USE_Z_LOSS = (z_loss_factor != 0.0),
IS_EVEN=((n_cols % BLOCK_SIZE) == 0),
num_warps = num_warps,
)
return dinputs
@torch.library.impl_abstract("flasht5::cross_entropy_triton_bwd", cross_entropy_triton_bwd)
def cross_entropy_triton_bwd_abstract(dlosses, dlogsumexp, logits, logsumexp, labels, z_loss_factor, n_cols, n_rows, BLOCK_SIZE, num_warps):
return torch.empty_like(logits)
class Fast_CrossEntropyLoss(torch.autograd.Function):
@staticmethod
def forward(ctx, logits, labels, z_loss_factor):
n_rows, n_cols = logits.shape
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
losses, logsumexp = torch.ops.flasht5.cross_entropy_triton_fwd(
logits,
labels,
n_cols,
n_rows,
BLOCK_SIZE = BLOCK_SIZE,
num_warps = num_warps
)
ctx.BLOCK_SIZE = BLOCK_SIZE
ctx.num_warps = num_warps
ctx.z_loss_factor = z_loss_factor
ctx.save_for_backward(logits, logsumexp, labels)
return losses, logsumexp
@staticmethod
def backward(ctx, dlosses, dlogsumexp):
logits, logsumexp, labels = ctx.saved_tensors
n_rows, n_cols = logits.shape
dinputs = torch.ops.flasht5.cross_entropy_triton_bwd(
dlosses,
dlogsumexp,
logits,
logsumexp,
labels,
ctx.z_loss_factor,
n_cols,
n_rows,
ctx.BLOCK_SIZE,
ctx.num_warps
)
return dinputs, None, None
def fast_cross_entropy_loss(logits, labels, z_loss_factor=0.0):
"""
Arguments:
logits: (batch, seq_len, vocab_size)
labels: (batch, seq_len,)
Returns:
losses: float
"""
batch, seq_len, d = logits.shape
assert(labels.shape == (batch, seq_len))
assert (d <= MAX_FUSED_SIZE)
loss, lse = Fast_CrossEntropyLoss.apply(
logits.view(batch*seq_len, d),
labels.view(-1),
z_loss_factor
)
n_items = torch.count_nonzero(labels != -100)
return loss.sum() / n_items, (z_loss_factor * torch.square(lse).sum()) / n_items
|