File size: 4,217 Bytes
d067bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: spellcorrector_2510_v15_canine-s
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# spellcorrector_2510_v15_canine-s

This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1599
- Precision: 0.9768
- Recall: 0.9820
- F1: 0.9794
- Accuracy: 0.9786

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1921        | 1.0   | 1951  | 0.1677          | 0.9417    | 0.9774 | 0.9592 | 0.9650   |
| 0.1627        | 2.0   | 3902  | 0.1436          | 0.9500    | 0.9779 | 0.9637 | 0.9674   |
| 0.1395        | 3.0   | 5853  | 0.1266          | 0.9545    | 0.9788 | 0.9665 | 0.9697   |
| 0.1266        | 4.0   | 7804  | 0.1172          | 0.9661    | 0.9698 | 0.9680 | 0.9702   |
| 0.1105        | 5.0   | 9755  | 0.1064          | 0.9669    | 0.9766 | 0.9717 | 0.9731   |
| 0.1011        | 6.0   | 11706 | 0.1011          | 0.9705    | 0.9757 | 0.9731 | 0.9745   |
| 0.0933        | 7.0   | 13657 | 0.0987          | 0.9718    | 0.9766 | 0.9742 | 0.9752   |
| 0.0851        | 8.0   | 15608 | 0.0973          | 0.9715    | 0.9787 | 0.9751 | 0.9755   |
| 0.0758        | 9.0   | 17559 | 0.0998          | 0.9734    | 0.9765 | 0.9750 | 0.9756   |
| 0.069         | 10.0  | 19510 | 0.0993          | 0.9732    | 0.9810 | 0.9771 | 0.9764   |
| 0.0635        | 11.0  | 21461 | 0.1055          | 0.9739    | 0.9808 | 0.9773 | 0.9766   |
| 0.0576        | 12.0  | 23412 | 0.1072          | 0.9751    | 0.9794 | 0.9772 | 0.9765   |
| 0.0493        | 13.0  | 25363 | 0.1078          | 0.9754    | 0.9807 | 0.9780 | 0.9776   |
| 0.0469        | 14.0  | 27314 | 0.1145          | 0.9757    | 0.9815 | 0.9786 | 0.9777   |
| 0.0409        | 15.0  | 29265 | 0.1174          | 0.9758    | 0.9806 | 0.9782 | 0.9764   |
| 0.0373        | 16.0  | 31216 | 0.1218          | 0.9763    | 0.9801 | 0.9782 | 0.9769   |
| 0.0338        | 17.0  | 33167 | 0.1239          | 0.9768    | 0.9805 | 0.9787 | 0.9773   |
| 0.0326        | 18.0  | 35118 | 0.1312          | 0.9770    | 0.9787 | 0.9779 | 0.9773   |
| 0.029         | 19.0  | 37069 | 0.1320          | 0.9764    | 0.9809 | 0.9786 | 0.9773   |
| 0.0245        | 20.0  | 39020 | 0.1376          | 0.9767    | 0.9802 | 0.9784 | 0.9777   |
| 0.0231        | 21.0  | 40971 | 0.1382          | 0.9763    | 0.9814 | 0.9788 | 0.9776   |
| 0.0212        | 22.0  | 42922 | 0.1473          | 0.9762    | 0.9826 | 0.9794 | 0.9780   |
| 0.0201        | 23.0  | 44873 | 0.1485          | 0.9762    | 0.9816 | 0.9789 | 0.9778   |
| 0.0187        | 24.0  | 46824 | 0.1494          | 0.9763    | 0.9818 | 0.9790 | 0.9775   |
| 0.0166        | 25.0  | 48775 | 0.1502          | 0.9769    | 0.9813 | 0.9791 | 0.9781   |
| 0.0163        | 26.0  | 50726 | 0.1560          | 0.9769    | 0.9813 | 0.9791 | 0.9785   |
| 0.0149        | 27.0  | 52677 | 0.1556          | 0.9764    | 0.9824 | 0.9794 | 0.9784   |
| 0.0143        | 28.0  | 54628 | 0.1587          | 0.9767    | 0.9818 | 0.9792 | 0.9784   |
| 0.0126        | 29.0  | 56579 | 0.1589          | 0.9766    | 0.9821 | 0.9793 | 0.9784   |
| 0.013         | 30.0  | 58530 | 0.1599          | 0.9768    | 0.9820 | 0.9794 | 0.9786   |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.13.3