File size: 17,123 Bytes
541e9bd e600401 541e9bd d797ff7 541e9bd e600401 541e9bd d797ff7 541e9bd d797ff7 541e9bd d797ff7 541e9bd d797ff7 541e9bd 7c81d0a 541e9bd 7c81d0a 541e9bd 7c81d0a 541e9bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import os
import torch
from diffusers import DiffusionPipeline, FluxPipeline, StableDiffusion3Pipeline
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from .model import DrUM as backbone
from .sampling import coreset_sampling
def stable_diffusion(large):
"""
openai/clip-vit-large-patch14, CLIPTextModel, skip -1
"""
def inference(prompt, ref_prompt = None, weight = None, alpha = 0.3, skip = -1, batch_size = 64, **kwargs):
return large(prompt, ref_prompt, pooling = False, weight = weight, alpha = alpha, skip = skip, batch_size = batch_size, **kwargs), None
return inference
def stable_diffusion_v2(huge):
"""
openai/clip-vit-huge-patch14, CLIPTextModel, skip -1
"""
def inference(prompt, ref_prompt = None, weight = None, alpha = 0.3, skip = -1, batch_size = 64, **kwargs):
return huge(prompt, ref_prompt, pooling = False, weight = weight, alpha = alpha, skip = skip, batch_size = batch_size, **kwargs), None
return inference
def stable_diffusion_xl(large, bigG):
"""
openai/clip-vit-large-patch14, CLIPTextModel, skip -2, unnorm
laion/CLIP-ViT-bigG-14-laion2B-39B-b160k, CLIPTextModelWithProjection, skip -2, unnorm, pooling + proj
"""
def inference(prompt, ref_prompt = None, weight = None, alpha = 0.3, skip = -2, batch_size = 64, **kwargs):
hidden_state = large(prompt, ref_prompt, pooling = False, weight = weight, alpha = alpha, skip = skip, batch_size = batch_size, normalize = False, **kwargs)
if skip == -1:
hidden_state2, pool_hidden_state = bigG(prompt, ref_prompt, pooling = True, weight = weight, alpha = alpha, skip = skip, batch_size = batch_size, normalize = False, normalize_pool = True, **kwargs)
else:
hidden_state2 = bigG(prompt, ref_prompt, pooling = False, weight = weight, alpha = alpha, skip = skip, batch_size = batch_size, normalize = False, **kwargs)
pool_hidden_state = bigG(prompt, ref_prompt, pooling = True, weight = weight, alpha = alpha, skip = -1, batch_size = batch_size, normalize = False, normalize_pool = True, **kwargs)[1]
hidden_state = torch.cat([hidden_state, hidden_state2], dim = -1)
pool_hidden_state = bigG.projection_text_hidden_state(pool_hidden_state)
return hidden_state.type(pool_hidden_state.dtype), pool_hidden_state
return inference
def stable_diffusion_v3(large, bigG, t5):
"""
openai/clip-vit-large-patch14, CLIPTextModelWithProjection, skip -2, unnorm, pooling + proj
laion/CLIP-ViT-bigG-14-laion2B-39B-b160k, CLIPTextModelWithProjection, skip -2, unnorm, pooling + proj
t5-v1_1-xxl, T5EncoderModel
"""
def inference(prompt, ref_prompt = None, weight = None, alpha = 0.3, skip = -2, batch_size = 64, **kwargs):
if skip == -1:
hidden_state, pool_hidden_state = large(prompt, ref_prompt, pooling = True, weight = weight, alpha = alpha, skip = skip, batch_size = batch_size, normalize = False, normalize_pool = True, **kwargs)
hidden_state2, pool_hidden_state2 = bigG(prompt, ref_prompt, pooling = True, weight = weight, alpha = alpha, skip = skip, batch_size = batch_size, normalize = False, normalize_pool = True, **kwargs)
else:
hidden_state = large(prompt, ref_prompt, pooling = False, weight = weight, alpha = alpha, skip = skip, batch_size = batch_size, normalize = False, **kwargs)
hidden_state2 = bigG(prompt, ref_prompt, pooling = False, weight = weight, alpha = alpha, skip = skip, batch_size = batch_size, normalize = False, **kwargs)
pool_hidden_state = large(prompt, ref_prompt, pooling = True, weight = weight, alpha = alpha, skip = -1, batch_size = batch_size, normalize = False, normalize_pool = True, **kwargs)[1]
pool_hidden_state2 = bigG(prompt, ref_prompt, pooling = True, weight = weight, alpha = alpha, skip = -1, batch_size = batch_size, normalize = False, normalize_pool = True, **kwargs)[1]
hidden_state3 = t5(prompt, ref_prompt, pooling = False, weight = weight, alpha = alpha, batch_size = batch_size, normalize = False, **kwargs)
hidden_state = torch.cat([hidden_state, hidden_state2], dim = -1)
pool_hidden_state = large.projection_text_hidden_state(pool_hidden_state)
pool_hidden_state2 = bigG.projection_text_hidden_state(pool_hidden_state2)
hidden_state = torch.nn.functional.pad(hidden_state, (0, hidden_state3.shape[-1] - hidden_state.shape[-1]))
hidden_state = torch.cat([hidden_state, hidden_state3], dim = -2)
pool_hidden_state = torch.cat([pool_hidden_state, pool_hidden_state2], dim = -1)
return hidden_state.type(pool_hidden_state.dtype), pool_hidden_state
return inference
def flux(large, t5):
"""
openai/clip-vit-large-patch14, CLIPTextModel, pooling
t5-v1_1-xxl, T5EncoderModel
"""
def inference(prompt, ref_prompt = None, weight = None, alpha = 0.3, skip = None, batch_size = 64, **kwargs):
hidden_state = t5(prompt, ref_prompt, pooling = False, weight = weight, alpha = alpha, batch_size = batch_size, normalize = False, **kwargs)
pool_hidden_state = large(prompt, ref_prompt, pooling = True, weight = weight, alpha = alpha, skip = -1, batch_size = batch_size, normalize = False, normalize_pool = True, **kwargs)[1]
return hidden_state.type(pool_hidden_state.dtype), pool_hidden_state
return inference
def peca(pipeline, save_path = "./weight", n_layer = 10):
if os.path.exists(os.path.join(save_path, "L.pth")) or os.path.exists(os.path.join(save_path, "H.pth")):
load_func = torch.load
postfix = "pth"
else:
from safetensors.torch import load_file as load_func
postfix = "safetensors"
if "flux" in pipeline.config._name_or_path.split("/")[-1].lower():
model = pipeline.text_encoder
processor = pipeline.tokenizer
model2 = pipeline.text_encoder_2
processor2 = pipeline.tokenizer_2
large = backbone(model, processor, n_layer = n_layer, pos = False, cls_pos = False, dropout = 0.0).to(pipeline.device).eval()
large.adapter.load_state_dict(load_func(os.path.join(save_path, "L.{0}".format(postfix))))
t5 = backbone(model2, processor2, n_layer = n_layer, encode_ratio = 4, pos = False, cls_pos = False, dropout = 0.0).to(pipeline.device).eval()
t5.adapter.load_state_dict(load_func(os.path.join(save_path, "T5.{0}".format(postfix))))
empty, pool = large.encode_prompt("", pooling = True, normalize = False, normalize_pool = False)
large.adapter.set_base_query(torch.cat([empty, pool.unsqueeze(1)], dim = 1))
empty, pool = t5.encode_prompt("", pooling = True, normalize = False, normalize_pool = False)
t5.adapter.set_base_query(empty)
feature_encoder = large
encoder = flux(large, t5)
size = 1024
num_inference_steps = 28
skip = -2
elif "stable-diffusion-3.5" in pipeline.config._name_or_path.split("/")[-1].lower(): #sd v3
model = pipeline.text_encoder
processor = pipeline.tokenizer
model2 = pipeline.text_encoder_2
processor2 = pipeline.tokenizer_2
model3 = pipeline.text_encoder_3
processor3 = pipeline.tokenizer_3
large = backbone(model, processor, n_layer = n_layer, pos = False, cls_pos = False, dropout = 0.0).to(pipeline.device).eval()
large.adapter.load_state_dict(load_func(os.path.join(save_path, "L.{0}".format(postfix))))
bigG = backbone(model2, processor2, n_layer = n_layer, pos = False, cls_pos = False, dropout = 0.0).to(pipeline.device).eval()
bigG.adapter.load_state_dict(load_func(os.path.join(save_path, "bigG.{0}".format(postfix))))
t5 = backbone(model3, processor3, n_layer = n_layer, encode_ratio = 4, pos = False, cls_pos = False, dropout = 0.0).to(pipeline.device).eval()
t5.adapter.load_state_dict(load_func(os.path.join(save_path, "T5.{0}".format(postfix))))
empty, pool = large.encode_prompt("", pooling = True, normalize = False, normalize_pool = False)
large.adapter.set_base_query(torch.cat([empty, pool.unsqueeze(1)], dim = 1))
empty, pool = bigG.encode_prompt("", pooling = True, normalize = False, normalize_pool = False)
bigG.adapter.set_base_query(torch.cat([empty, pool.unsqueeze(1)], dim = 1))
empty, pool = t5.encode_prompt("", pooling = True, normalize = False, normalize_pool = False)
t5.adapter.set_base_query(empty)
feature_encoder = large
encoder = stable_diffusion_v3(large, bigG, t5)
size = 1024
num_inference_steps = 28
skip = -2
elif "xl-base" in pipeline.config._name_or_path.split("/")[-1].lower(): #sd xl
model = pipeline.text_encoder
processor = pipeline.tokenizer
model2 = pipeline.text_encoder_2
processor2 = pipeline.tokenizer_2
large = backbone(model, processor, n_layer = n_layer, pos = False, cls_pos = False, dropout = 0.0).to(pipeline.device).eval()
large.adapter.load_state_dict(load_func(os.path.join(save_path, "L.{0}".format(postfix))))
bigG = backbone(model2, processor2, n_layer = n_layer, pos = False, cls_pos = False, dropout = 0.0).to(pipeline.device).eval()
bigG.adapter.load_state_dict(load_func(os.path.join(save_path, "bigG.{0}".format(postfix))))
empty, pool = large.encode_prompt("", pooling = True, normalize = False, normalize_pool = False)
large.adapter.set_base_query(torch.cat([empty, pool.unsqueeze(1)], dim = 1))
empty, pool = bigG.encode_prompt("", pooling = True, normalize = False, normalize_pool = False)
bigG.adapter.set_base_query(torch.cat([empty, pool.unsqueeze(1)], dim = 1))
feature_encoder = large
encoder = stable_diffusion_xl(large, bigG)
size = 1024
num_inference_steps = 50
skip = -2
elif "stable-diffusion-2" in pipeline.config._name_or_path.split("/")[-1].lower():
model = pipeline.text_encoder
processor = pipeline.tokenizer
huge = backbone(model, processor, n_layer = n_layer, pos = False, cls_pos = False, dropout = 0.0).to(pipeline.device).eval()
huge.adapter.load_state_dict(load_func(os.path.join(save_path, "H.{0}".format(postfix))))
empty, pool = huge.encode_prompt("", pooling = True, normalize = False, normalize_pool = False)
huge.adapter.set_base_query(torch.cat([empty, pool.unsqueeze(1)], dim = 1))
feature_encoder = huge
encoder = stable_diffusion_v2(huge)
size = 768
num_inference_steps = 50
skip = -1
else: #sd
model = pipeline.text_encoder
processor = pipeline.tokenizer
large = backbone(model, processor, n_layer = n_layer, pos = False, cls_pos = False, dropout = 0.0).to(pipeline.device).eval()
large.adapter.load_state_dict(load_func(os.path.join(save_path, "L.{0}".format(postfix))))
empty, pool = large.encode_prompt("", pooling = True, normalize = False, normalize_pool = False)
large.adapter.set_base_query(torch.cat([empty, pool.unsqueeze(1)], dim = 1))
feature_encoder = large
encoder = stable_diffusion(large)
size = 512
num_inference_steps = 50
skip = -1
return encoder, feature_encoder.get_text_feature, size, num_inference_steps, skip
class DrUM(DiffusionPipeline):
def __init__(self, pipeline, repo_id = "Burf/DrUM", weight = None, torch_dtype = torch.bfloat16, device = "cuda"):
"""
DrUM for various T2I diffusion models
"""
self.pipeline = pipeline if not isinstance(pipeline, str) else self.load_pipeline(pipeline, torch_dtype = torch_dtype, device = device)
self.repo_id = repo_id
self.adapter, self.feature_encoder, self.size, self.num_inference_steps, self.skip = self.load_peca(self.pipeline, repo_id, weight)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, repo_id = "Burf/DrUM", torch_dtype = torch.bfloat16, device = "cuda", weight=None):
"""
Load DrUM adapter with appropriate pipeline
"""
pipeline = cls.load_pipeline(pretrained_model_name_or_path, torch_dtype, device)
return cls(pipeline = pipeline, repo_id = repo_id, weight = weight, torch_dtype = torch_dtype, device = device)
@staticmethod
def load_pipeline(model_id, torch_dtype = torch.bfloat16, device = "cuda"):
name = model_id.split("/")[-1].lower()
if "flux" in name:
pipeline = FluxPipeline.from_pretrained(model_id, torch_dtype = torch_dtype)
elif "stable-diffusion-3.5" in name:
pipeline = StableDiffusion3Pipeline.from_pretrained(model_id, torch_dtype = torch_dtype)
else:
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype = torch_dtype)
pipeline = pipeline.to(device if torch.cuda.is_available() else "cpu")
#pipeline.safety_checker = lambda images, clip_input: (images, [False] * len(images))
return pipeline
def load_weight(self, pipeline, repo_id = "Burf/DrUM", weight = None):
name = pipeline.config._name_or_path.split("/")[-1].lower()
weights = []
if "flux" in name:
weights = ["L.safetensors", "T5.safetensors"]
elif "stable-diffusion-3.5" in name:
weights = ["L.safetensors", "bigG.safetensors", "T5.safetensors"]
elif "xl-base" in name:
weights = ["L.safetensors", "bigG.safetensors"]
elif "stable-diffusion-2" in name:
weights = ["H.safetensors"]
else: # SD v1.5
weights = ["L.safetensors"]
for weight_file in weights:
if isinstance(weight, str) and os.path.exists(os.path.join(weight, weight_file)):
weight_path = weight
break
else:
safetensor_path = hf_hub_download(repo_id = repo_id, filename = "weight/" + weight_file)
weight_path = os.path.dirname(safetensor_path)
return weight_path
def load_peca(self, pipeline, repo_id = "Burf/DrUM", weight = None):
adapter, feature_encoder, size, num_inference_steps, skip = peca(pipeline, save_path = self.load_weight(pipeline, repo_id, weight))
return adapter, feature_encoder, size, num_inference_steps, skip
def __call__(self, prompt, ref = None, weight = None, alpha = 0.3, skip = None, sampling = False, seed = 42,
size = None, num_inference_steps = None, num_images_per_prompt = 1):
"""
Generate images using DrUM adapter
Args:
prompt: Text prompt for generation
ref: Reference prompts (list of strings)
weight: Weights for reference prompts (list of floats)
alpha: Personalization strength (0-1)
skip: Text condition axis
sampling: Whether to use coreset sampling for reference selection (default: False)
seed: Random seed
size: Image size
num_inference_steps: Inference steps
num_images_per_prompt: Number of images to generate
Returns:
Personalized images (list of PIL Images)
"""
size = self.size if size is None else size
num_inference_steps = self.num_inference_steps if num_inference_steps is None else num_inference_steps
skip = self.skip if skip is None else skip
if sampling and isinstance(ref, (tuple, list)) and 1 < len(ref):
import numpy as np
with torch.no_grad():
feature = self.feature_encoder(ref).cpu().float().numpy()
indices = coreset_sampling(feature, weight = weight, seed = seed)
ref = np.array(ref)[indices].tolist()
if isinstance(weight, (tuple, list)) and len(weight) == len(ref):
weight = np.array(weight)[indices].tolist()
generator = torch.Generator(self.pipeline.device).manual_seed(seed)
with torch.no_grad():
cond, pool_cond = self.adapter(prompt, ref, weight = weight, alpha = alpha, skip = skip)
pipe_kwargs = {
"num_images_per_prompt": num_images_per_prompt,
"num_inference_steps": num_inference_steps,
"generator": generator,
"height": size,
"width": size
}
pipe_kwargs["prompt_embeds"] = cond.type(self.pipeline.dtype)
if pool_cond is not None:
pipe_kwargs["pooled_prompt_embeds"] = pool_cond.type(self.pipeline.dtype)
name = self.pipeline.config._name_or_path.split("/")[-1].lower()
if "flux" in name or "stable-diffusion-3" in name:
pipe_kwargs["max_sequence_length"] = 256
images = self.pipeline(**pipe_kwargs).images
return images |