File size: 38,564 Bytes
9083130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 |
import argparse
import logging
import os
import random
import math
import copy
import json
import numpy as np
import torch
import torch.nn as nn
import glob
from tqdm.auto import tqdm, trange
from torch.autograd import Variable
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.utils import InitProcessGroupKwargs
from torch.utils.data import IterableDataset, DataLoader, Dataset
import time
import torch.distributed as dist
import gc
from datetime import timedelta
from tokenizers import Tokenizer
import wandb
os.environ["WANDB_WATCH"] = "false"
class BraLM(nn.Module):
def __init__(self, hidden_size, use_ds=False, zero_freq_edges=None, vocab=None):
super().__init__()
self.hidden_size = hidden_size
self.activation = nn.GELU()
self.positions = nn.Parameter(torch.ones(1, 512, 1))
self.device = None
# for fsdp
self._tied_weights_keys = []
self.use_ds = use_ds
self.zero_freq_edges = zero_freq_edges
self.vocab = vocab
def prepare_network(self, vocab):
# Create index mappings for the flattened structure
self.weight_indices = {} # Maps (s_idx, t_idx) to parameter index
self.shared_param_idx = 0
# Current index for new parameters
current_idx = 1
# Populate parameters and mappings
for s_idx, s in enumerate(vocab.edge_dict):
for t_idx, t in enumerate(vocab.edge_dict[s]):
if self.zero_freq_edges is not None and t in self.zero_freq_edges[s]:
# Use shared parameters
self.weight_indices[(s_idx, t_idx)] = self.shared_param_idx
else:
self.weight_indices[(s_idx, t_idx)] = current_idx
current_idx += 1
# Create new parameters
self.weights = nn.Parameter(torch.randn(current_idx, self.hidden_size, self.hidden_size).uniform_(-0.5, 0.5))
self.biases = nn.Parameter(torch.randn(current_idx, 1, self.hidden_size).uniform_(-0.5, 0.5))
self.node_bias = nn.Parameter(torch.randn(len(vocab.edge_dict), 1, self.hidden_size).uniform_(-0.5, 0.5))
def to_device(self, device):
self.weights.to(device)
self.biases.to(device)
self.positions.data = self.positions.data.to(device)
self.device = device
@staticmethod
def _reshape12(x):
return x.reshape(-1, x.size(-2), x.size(-1))
def get_positional_encoding(self, seq_len, d_model):
position = torch.arange(0, seq_len).reshape(-1, 1)
div_term = 10000.0 ** (torch.arange(0, d_model, 2) / d_model)
position_encoding = torch.zeros(seq_len, d_model)
position_encoding[:, 0::2] = torch.sin(position * div_term)
position_encoding[:, 1::2] = torch.cos(position * div_term)
return position_encoding.unsqueeze(0).to(self.device)
# def get_initial_tensor(self, batch_size, max_norm=1.0):
# # initialize energy_tensor
# energy_tensor = torch.zeros(batch_size, 1, self.hidden_size).normal_(0, 1).to(self.device)
# delta_norm = torch.norm(energy_tensor.view(energy_tensor.shape[0], -1), dim=-1, p="fro").detach()
# clip_mask = (delta_norm > max_norm).to(energy_tensor)
# clip_weights = max_norm / delta_norm * clip_mask + (1 - clip_mask)
# energy_tensor = (energy_tensor * clip_weights.view(-1, 1, 1)).detach() #(bs, 1, hs)
# return energy_tensor
def get_initial_tensor(self, batch_size, d, pe):
# initialize energy_tensor
energy_tensor = torch.ones(batch_size, 1, self.hidden_size) / self.hidden_size #(bs, 1, hs)
energy_tensor = energy_tensor.to(self.device)
node_bias = self.node_bias[d[:, 0, 0]]
energy_tensor = self.activation(energy_tensor + node_bias + Variable(pe[:,0], requires_grad=False))
return energy_tensor
def forward(self, neighbor_ids):
# neighbor_ids: (bs, sen_len, 1+k, 2) ; k is the number of negative samples
batch_size = neighbor_ids.size(0)
loss = 0
pe = self.get_positional_encoding(512, self.hidden_size) #(1, 512, hs)
for i in range(neighbor_ids.size(1)):
d = neighbor_ids[:, i] #(bs, 1+k, 2)
if i == 0:
# for the first token, initialize energy_tensor as an all-one tensor
energy_tensor = self.get_initial_tensor(batch_size, d, pe) #(bs, 1, hs)
else:
energy_tensor = (energy_cache * self.positions[:, :i, :].softmax(1)).sum(1, keepdim=True) #(bs, 1, hs) :fix dim bug
# Vectorized parameter lookup
src_idx = d[..., 0] # (bs, 1+k)
tgt_idx = d[..., 1] # (bs, 1+k)
param_indices = torch.tensor([self.weight_indices.get((s.item(), t.item()), self.shared_param_idx)
for s, t in zip(src_idx.reshape(-1), tgt_idx.reshape(-1))],
device=self.device).reshape(batch_size, -1) # (bs, 1+k)
# Batch gather operation
w = self.weights[param_indices] # (bs, 1+k, hidden_size, hidden_size)
b = self.biases[param_indices] # (bs, 1+k, 1, hidden_size)
expand_energy_tensor = self._reshape12(energy_tensor.unsqueeze(1).repeat(1, w.size(1), 1, 1)) #(bs*(1+k), 1, hs)
# for deepspeed fp16: expand_energy_tensor.half()
if self.use_ds:
expand_energy_tensor = expand_energy_tensor.half()
nxt_energy_tensor = self.activation(expand_energy_tensor.bmm(self._reshape12(w))+self._reshape12(b)+Variable(pe[:,i+1], requires_grad=False)) #(bs*(1+k), 1, hs)
output_tensor = nxt_energy_tensor.reshape(batch_size, -1, nxt_energy_tensor.size(-2), nxt_energy_tensor.size(-1)) #(bs, 1+k, 1, hs)
if i == 0:
energy_cache = output_tensor[:,0] #(bs, 1, hs)
else:
energy_cache = torch.cat([energy_cache, output_tensor[:,0]], dim=1) #(bs, i+1, hs)
if 1:
energy = output_tensor.norm(2, (-2, -1))
label = torch.LongTensor([0 for _ in range(batch_size)]).to(self.device)
loss += nn.CrossEntropyLoss()(energy, label)
return loss / neighbor_ids.size(1)
def decode(self, start, vocab, max_new_tokens=16, do_sample=False, temperature=1):
ret = []
pe = self.get_positional_encoding(512, self.hidden_size)
for i, pair in enumerate(start):
if i == 0:
energy_tensor = self.get_initial_tensor(batch_size=1, d=torch.tensor([[pair]], device=self.device), pe=pe).squeeze(0)
else:
energy_tensor = (energy_cache * self.positions[:, :i, :].softmax(1)).sum(1, keepdim=True).squeeze(0)
# Get parameter index for this edge
param_idx = self.weight_indices.get((pair[0], pair[1]), self.shared_param_idx)
# Get weights and biases using parameter index
w = self.weights[param_idx].to(self.device)
b = self.biases[param_idx].to(self.device)
energy_tensor = self.activation(energy_tensor.mm(w) + b + pe.squeeze(0)[i])
if i == 0:
energy_cache = energy_tensor.unsqueeze(0) # Add batch dimension
else:
energy_cache = torch.cat([energy_cache, energy_tensor.unsqueeze(0)], dim=1)
ret += [pair]
x = pair[1]
prev_i = len(start)
for i in range(max_new_tokens):
candidates = vocab(vocab.get_neighbor_of_node(x, -1))
# Get parameter indices for all candidates
param_indices = torch.tensor([self.weight_indices.get((x, t[1]), self.shared_param_idx)
for t in candidates], device=self.device)
# Get weights and biases for all candidates
all_w = self.weights[param_indices].to(self.device)
all_b = self.biases[param_indices].to(self.device)
curr_i = prev_i + i
energy_tensor = (energy_cache * self.positions[:, :curr_i, :].softmax(1)).sum(1, keepdim=True)
expand_energy_tensor = energy_tensor.unsqueeze(1).repeat(1, all_w.size(0), 1, 1)
expand_energy_tensor = self._reshape12(expand_energy_tensor)
nxt_energy_tensor = self.activation(expand_energy_tensor.bmm(self._reshape12(all_w)) + self._reshape12(all_b) + pe[:,curr_i].unsqueeze(0))
output_tensor = nxt_energy_tensor.reshape(1, -1, nxt_energy_tensor.size(-2), nxt_energy_tensor.size(-1))
energy = output_tensor.norm(2, (-2,-1)).squeeze()
probs = torch.softmax(energy, dim=-1)
if temperature > 0:
probs = probs / temperature
if do_sample:
index = torch.multinomial(probs, 1).item()
else:
index = probs.argmax(-1).item()
y = candidates[index][-1]
ret += [(x, y)]
energy_tensor = output_tensor[0, index]
x = y
energy_cache = torch.cat([energy_cache, energy_tensor.unsqueeze(0)], dim=1)
return ret
class Vocab:
def __init__(self, node_dict, nodeindex_dict, edge_dict, edge_decode_dict):
self.node_dict = node_dict #{'node_p': index_p} ---- size: num_nodes
self.nodeindex_dict = nodeindex_dict #{index_p: 'node_p'} ---- size: num_nodes
self.edge_dict = edge_dict #{'node_p': {'node_q': (index_p, index_q), 'node_m': (index_p, index_m)},...} ---- size: num_nodes
self.edge_decode_dict = edge_decode_dict #{(index_p, index_q): 'node_p->node_q'} ---- size: num_nodes*num_nodes
def __call__(self, x):
if isinstance(x, list):
return [self.__call__(_) for _ in x]
else:
return self.fetch(x)
def fetch(self, x):
s, t = x.split("->")
return self.edge_dict[s][t] if s in self.edge_dict and t in self.edge_dict[s] else self.edge_dict[""][""]
@classmethod
def from_node_dict(cls, dictname):
node_dict = dict()
nodeindex_dict = dict()
edge_dict = dict()
edge_decode_dict = dict()
for s in dictname:
node_dict[s] = dictname[s]
nodeindex_dict[dictname[s]] = s # nodeindex_dict: {index_p: 'node_p'}
edge_dict[s] = {} # edge_dict: {'node_p': {'node_q': (index_p, index_q), 'node_m': (index_p, index_m)}}
for t in dictname:
edge_dict[s][t] = (dictname[s], dictname[t])
edge_decode_dict[(dictname[s], dictname[t])] = "->".join([s, t])
return cls(node_dict, nodeindex_dict, edge_dict, edge_decode_dict)
@classmethod
def from_edge(cls, filename):
edge_dict = dict()
edge_dict[""] = {}
edge_dict[""][""] = (0, 0)
edge_decode_dict = dict()
with open(filename) as f:
for line in f:
# line: node_p->node_q
s, t = line.strip().split("->")
if s not in edge_dict:
i = len(edge_dict)
j = 0
edge_dict[s] = dict()
else:
i = edge_dict[s][list(edge_dict[s].keys())[0]][0]
j = len(edge_dict[s])
edge_dict[s][t] = (i, j)
edge_decode_dict[(i, j)] = "->".join([s, t])
return cls(None, edge_dict, edge_decode_dict)
def get_neighbor_of_edge(self, key, k, frequency_dict=None):
s, t = key.split("->") # s, t: node
_s = s if s in self.edge_dict else ""
# if s in self.edge_dict:
# ret = ["->".join([s, _t]) for _t in self.edge_dict[s].keys() if _t != t]
# else:
# ret = ["->".join([s, _t]) for _t in self.edge_dict[""].keys() if _t != t]
# ret = ["->".join([s, _t]) for _t in self.edge_dict[s].keys() if _t != t]
# select by word_frequency
if frequency_dict:
frequency_lst = list(frequency_dict[_s].keys())
# index = frequency_lst.index(t)
# half = k // 2
# if index <= k:
# t_lst = [x for i, x in enumerate(frequency_lst[:k+1]) if i != index]
# else:
# t_lst = frequency_lst[:half] + frequency_lst[index-half:index]
t_lst = [x for i, x in enumerate(frequency_lst[:k+1]) if x != t][:k]
ret = ["->".join([_s, _t]) for _t in t_lst]
random.shuffle(ret)
return ret
# randomly select k negative samples
else:
ret = ["->".join([_s, _t]) for _t in self.edge_dict[_s].keys() if _t != t]
random.shuffle(ret)
return ret[:k] if k != -1 else ret
def get_neighbor_of_node(self, key, k):
#key :index
s = self.nodeindex_dict[key] #node
#_t: node
ret = ["->".join([s, _t]) for _t in self.edge_dict[s].keys() if _t != s]
# randomly select k negative samples
random.shuffle(ret)
return ret[:k] if k != -1 else ret
def get_neighbor_of_edge_broadcast(self, key, edges, k=100):
s, t = key.split("->")
_ret = [_t for _t in self.edge_dict[s].keys() if _t != t] # all neighbors of s except t
random.shuffle(_ret)
ret = []
for edge in edges:
s, t = edge.split("->")
ret += [["->".join([s, _t]) for _t in _ret[:k]]]
return ret
@staticmethod
def to_path(tokens):
path = []
for left, right in zip(tokens[:-1], tokens[1:]):
path.append("->".join([left, right]))
return path
def get_edge_of_node(self, key):
return list(self.edge_dict[key].values())
def decode(self, x):
return self.edge_decode_dict[x]
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO)
logger = logging.getLogger(__name__)
def stdf(string):
def _h(char):
inside_code = ord(char)
if inside_code == 0x3000:
inside_code = 0x0020
else:
inside_code -= 0xfee0
if inside_code < 0x0020 or inside_code > 0x7e:
return char
return chr(inside_code)
return "".join([_h(char) for char in string])
class WikiDataset(Dataset):
"""
Processor for wiki data.
"""
def __init__(self, filename, vocab, max_seq_length, num_neg_samples, seed, buffer_size=100000, shuffle=True, use_frequency=False, use_bpe=False, bpe_tokenizer=None):
super().__init__()
self.vocab = vocab
self.max_seq_length = max_seq_length
self.num_neg_samples = num_neg_samples
self.generator = np.random.default_rng(seed=seed)
self.use_bpe = use_bpe
self.bpe_tokenizer = bpe_tokenizer
self.data = self.read(filename)
if use_frequency:
freq_file = 'word_frequency_en.json' if use_bpe else 'word_frequency.json'
with open(freq_file, 'r') as f:
self.frequency_dict = json.load(f)
else:
self.frequency_dict = None
def read(self, filename):
lines = []
with open(filename, "r", encoding="utf-8") as f:
for line in f:
if self.use_bpe:
lines.append(line.strip())
else:
src = list(line.strip()[:self.max_seq_length])
lines.append(src)
return lines
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
src = self.data[idx]
return self.vectorize(src)
def vectorize(self, src):
if self.use_bpe:
# For English with BPE
bpe_tokens = self.bpe_tokenizer.encode(src).tokens
# Truncate/pad
pad_token = "[PAD]"
if len(bpe_tokens) > self.max_seq_length:
bpe_tokens = bpe_tokens[:self.max_seq_length]
else:
bpe_tokens.extend(pad_token for _ in range(self.max_seq_length - len(bpe_tokens)))
tokens = bpe_tokens
else:
# For Chinese without BPE
if len(src) > self.max_seq_length:
src = src[:self.max_seq_length]
else:
src.extend("" for _ in range(self.max_seq_length-len(src)))
tokens = src
edges = self.vocab.to_path(tokens)
edge_ids = self.vocab(edges)
edge_ids = edge_ids[:self.max_seq_length]
neighbor_ids = [self.vocab(self.vocab.get_neighbor_of_edge(e, self.num_neg_samples, self.frequency_dict)) for e in edges]
new_neighbor_ids = []
for i, e_ids in enumerate(edge_ids):
new_neighbor_ids.append([e_ids] + neighbor_ids[i])
return torch.LongTensor(new_neighbor_ids)
def main():
parser = argparse.ArgumentParser()
# Data config
parser.add_argument("--data_dir", type=str, default="data/wiki",
help="Directory to contain the input data for all tasks.")
parser.add_argument("--output_dir", type=str, default="model/",
help="Directory to output predictions and checkpoints.")
parser.add_argument("--load_state_dict", type=str, default=None,
help="Trained model weights to load for evaluation if needed.")
# Training config
parser.add_argument("--do_train", action="store_true",
help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true",
help="Whether to evaluate on the dev set.")
parser.add_argument("--num_neg_samples", type=int, default=100,
help="Number of negative samples.")
parser.add_argument("--max_seq_length", type=int, default=128,
help="Maximum total input sequence length after word-piece tokenization.")
parser.add_argument("--train_batch_size", type=int, default=128,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size", type=int, default=128,
help="Total batch size for evaluation.")
parser.add_argument("--learning_rate", type=float, default=5e-5,
help="Initial learning rate for Adam.")
parser.add_argument("--num_train_epochs", type=float, default=3.0,
help="Total number of training epochs to perform.")
parser.add_argument("--max_train_steps", type=int, default=None,
help="Total number of training steps to perform. If provided, overrides training epochs.")
parser.add_argument("--weight_decay", type=float, default=0.,
help="L2 weight decay for training.")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
help="Number of updates steps to accumulate before performing a backward pass.")
parser.add_argument("--no_cuda", action="store_true",
help="Whether not to use CUDA when available.")
parser.add_argument("--fp16", action="store_true",
help="Whether to use mixed precision.")
parser.add_argument("--seed", type=int, default=42,
help="Random seed for initialization.")
parser.add_argument("--save_steps", type=int, default=500,
help="How many steps to save the checkpoint once.")
parser.add_argument("--hidden_size", type=int, default=32,
help="Mask rate for masked-fine-tuning.")
parser.add_argument("--local_rank", type=int)
parser.add_argument("--initial_file_number", type=int, default=0,
help="From which file to begin training.")
parser.add_argument("--end_file_number", type=int, default=0,
help="End file number for training.")
parser.add_argument("--wiki_sorted_size", type=int, default=70,
help="Total file numbers for sorted wikidata.")
parser.add_argument("--run_name", type=str, default="plusb_pluspe_order",
help="Run name for wandb.")
parser.add_argument("--use_frequency", action="store_true",
help="Whether to use word frequency.")
parser.add_argument("--train_full", type=str, default=None,
help="Path to train on full text.")
parser.add_argument("--checkpoint_save_step", type=int, default=0,
help="Interval to save checkpoint.(Only support when train_full is True)")
parser.add_argument("--resume_from_checkpoint", type=str, default=None,
help="Path to checkpoint to resume training from")
parser.add_argument("--num_workers", type=int, default=8,
help="Number of workers for data loading.")
parser.add_argument("--vocab_path", type=str, default="vocab_wiki_4k.json",
help="Path to vocab file.")
parser.add_argument("--use_ds", action="store_true",
help="Whether to use deepspeed.")
parser.add_argument("--sparse", action="store_true",
help="Whether to use sparse.")
parser.add_argument("--use_bpe", action="store_true",
help="Whether to use BPE tokenizer for English.")
parser.add_argument("--bpe_tokenizer_path", type=str, default="wiki_bpe_tokenizer_4000_bytelevel.json",
help="Path to BPE tokenizer file.")
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
logger.info("device: {}, n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, "-accelerate", args.fp16))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
# if not os.path.exists(args.output_dir):
# os.makedirs(args.output_dir)
with open(args.vocab_path) as f:
node_dict = json.load(f)
vocab = Vocab.from_node_dict(node_dict)
if args.sparse:
with open('word_frequency.json', 'r') as f:
freq_dict = json.load(f)
zero_freq_edges = {}
for s in freq_dict:
zero_freq_edges[s] = []
for t in freq_dict[s]:
if freq_dict[s][t] == 0:
zero_freq_edges[s].append(t)
else:
zero_freq_edges = None
def stat_cuda(epoch, cur_file_num, step, location):
if accelerator.is_local_main_process:
with open("cuda_stat.txt", "a") as f:
if epoch is not None:
f.write('epoch: %d, cur_file_num: %d, step: %d\n' % (epoch, cur_file_num, step))
f.write(f'--{location}\n')
f.write('allocated: %dG, max allocated: %dG, cached: %dG, max cached: %dG\n' % (
torch.cuda.memory_allocated() / 1024 / 1024 / 1024,
torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024,
torch.cuda.memory_reserved() / 1024 / 1024 / 1024,
torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024
))
if args.do_train:
# training arguments
os.environ["NCCL_DEBUG"] = "WARN"
os.environ["TORCH_NCCL_BLOCKING_WAIT"] = "1"
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
init_kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=1080000))
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs, init_kwargs], cpu=args.no_cuda, mixed_precision="fp16" if args.fp16 else "no")
device = accelerator.device
# prepare model
model = BraLM(args.hidden_size, args.use_ds, zero_freq_edges, vocab=vocab)
model.prepare_network(vocab)
# model.shared_weight.requires_grad = False
# model.shared_bias.requires_grad = False
# load model from checkpoint
if args.load_state_dict:
print(f"Loading model from checkpoint: {args.load_state_dict}")
checkpoint = torch.load(args.load_state_dict, map_location="cpu")
#model.load_state_dict(checkpoint["model_state_dict"])
model.load_old(checkpoint["model_state_dict"])
# Load checkpoint if specified
wandb_id = None
global_step = 0
if args.resume_from_checkpoint:
print(f"Resuming from checkpoint: {args.resume_from_checkpoint}")
checkpoint = torch.load(args.resume_from_checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model_state_dict"])
#optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
start_epoch = checkpoint["epoch"] # + 1
global_step = checkpoint.get("global_step", 0) # Get saved global step
wandb_id = checkpoint.get("wandb_id")
else:
start_epoch = 0
# if accelerator.is_local_main_process:
# for name, param in model.named_parameters():
# print(name)
model.to_device(device)
if accelerator.is_local_main_process:
print(f"start_epoch: {start_epoch}, global_step: {global_step}")
# prepare optimizer
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0
}
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
if args.resume_from_checkpoint:
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
if accelerator.is_local_main_process:
print(f"before prepare")
#input('-' * 10)
#stat_cuda(None, None, None, "before prepare")
#print(f"{accelerator.device}, model: {model.weights.device}, tensor: {model.tensor.device}, pe: {model.positions.device}")
if not args.use_ds:
model, optimizer = accelerator.prepare(model, optimizer) # for deepspeed: # this line
#stat_cuda(None, None, None, "after prepare")
#print(f"{accelerator.device}, model: {model.module.weights.device}, tensor: {model.module.tensor.device}, pe: {model.module.positions.device}")
if accelerator.is_local_main_process:
print(f"after prepare")
if args.do_train:
if accelerator.is_local_main_process:
# init wandb
wandb.init(
project="brain",
name=args.run_name,
id=wandb_id, # 如果有之前的run_id,使用它;否则会创建新的
resume="allow", # "allow"表示如果有id就恢复,没有就创建新的
config=vars(args)
)
wandb.define_metric("custom_step")
wandb.define_metric("batch_*", step_metric="custom_step")
wandb.define_metric("epoch")
wandb.define_metric("epoch_*", step_metric="epoch")
print(f"Started wandb run with id: {wandb.run.id}")
print(f"View run at: {wandb.run.get_url()}")
if args.train_full:
cur_file_num = args.train_full
cur_filename = f"{cur_file_num}.txt"
if args.use_bpe:
with open(args.bpe_tokenizer_path, 'r') as f:
bpe_tokenizer = json.load(f)
else:
bpe_tokenizer = None
dataset = WikiDataset(
os.path.join(args.data_dir, cur_filename),
vocab,
args.max_seq_length,
args.num_neg_samples,
seed=args.seed,
shuffle=True,
use_frequency=args.use_frequency,
use_bpe=args.use_bpe,
bpe_tokenizer=bpe_tokenizer
)
train_dataloader = DataLoader(dataset, batch_size=args.train_batch_size, num_workers=args.num_workers, pin_memory=True)
train_dataloader = accelerator.prepare(train_dataloader)
elif args.resume_from_checkpoint:
cur_file_num = checkpoint["cur_file_num"]
if isinstance(cur_file_num, int) or cur_file_num.isdigit():
cur_file_num = int(cur_file_num) + 1
#start_epoch = start_epoch - 1
else:
cur_file_num = args.initial_file_number
if args.resume_from_checkpoint and global_step > 0:
if args.train_full and global_step % len(train_dataloader) == 0:
start_epoch = start_epoch + 1
if not args.train_full and cur_file_num > args.end_file_number:
start_epoch = start_epoch + 1
cur_file_num = args.initial_file_number
for epoch in trange(start_epoch, int(args.num_train_epochs), desc="Epoch"):
# traverse all wiki files
if epoch != start_epoch or args.train_full:
cur_file_num = args.initial_file_number
while cur_file_num <= args.wiki_sorted_size:
if args.train_full:
cur_file_num = args.train_full
logger.info("***** Running training for wiki = %s *****", cur_file_num)
logger.info(" Batch size = %d", args.train_batch_size * accelerator.num_processes)
# prepare data
if not args.train_full:
cur_filename = f"{cur_file_num}.txt"
if args.use_bpe:
with open(args.bpe_tokenizer_path, 'r') as f:
bpe_tokenizer = json.load(f)
else:
bpe_tokenizer = None
dataset = WikiDataset(
os.path.join(args.data_dir, cur_filename),
vocab,
args.max_seq_length,
args.num_neg_samples,
seed=args.seed,
shuffle=True,
use_frequency=args.use_frequency,
use_bpe=args.use_bpe,
bpe_tokenizer=bpe_tokenizer
)
train_dataloader = DataLoader(dataset, batch_size=args.train_batch_size, num_workers=args.num_workers, pin_memory=True)
if not args.use_ds:
train_dataloader = accelerator.prepare(train_dataloader)
else:
model, optimizer, train_dataloader = accelerator.prepare(model, optimizer, train_dataloader) # for deepspeed
# training
train_loss = 0
num_train_examples = 0
if accelerator.is_local_main_process:
progress_bar = tqdm(train_dataloader, desc="Iteration")
# start_time = time.time()
#for _ in range(3):
for step, batch in enumerate(train_dataloader, start=global_step % len(train_dataloader)):
# batch: (bs, sen_len, 1+k, 2)
batch_train_loss = 0
batch_num_train_examples = 0
#for ind in range(2, batch.size(1)):
for ind in range(batch.size(1) - 1, batch.size(1)): # fix: only use the sen_len-1
# ind: 2, 3, ..., sen_len-1
# if accelerator.is_local_main_process:
# end_time = time.time()
# step_time = end_time - start_time
# logger.info(f"Step training time: {step_time:.2f} seconds")
model.train()
neighbor_ids = batch[:, :ind] #(bs, ind, 1+k, 2)
#stat_cuda(epoch, cur_file_num, global_step, "before forward")
outputs = model(neighbor_ids)
loss = outputs
# if n_gpu > 1:
# loss = loss.mean()
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if n_gpu > 1:
dist.all_reduce(loss)
loss = loss / dist.get_world_size()
train_loss += loss.detach().item()
batch_train_loss += loss.detach().item()
num_train_examples += 1
batch_num_train_examples += 1
del outputs
del loss
del neighbor_ids
gc.collect()
# if step % 5 == 0:
# torch.cuda.empty_cache()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
## modified
ppl = math.exp(batch_train_loss / batch_num_train_examples)
if accelerator.is_local_main_process:
progress_bar.update(1)
progress_bar.set_postfix(loss=batch_train_loss / batch_num_train_examples, perplexity=ppl)
wandb.log({
"batch_loss": batch_train_loss / batch_num_train_examples,
"batch_perplexity": math.exp(batch_train_loss / batch_num_train_examples),
"batch_epoch": epoch,
#"step": global_step,
"custom_step": global_step
})#, step=global_step)
global_step += 1
# Save checkpoint every checkpoint_save_step steps at the end of each step
if accelerator.is_local_main_process and args.checkpoint_save_step > 0 and global_step % args.checkpoint_save_step == 0:
output_dir_f = f"{args.output_dir}/HS{args.hidden_size}/step_{global_step}/"
if not os.path.exists(output_dir_f):
os.makedirs(output_dir_f)
output_model_file = os.path.join(output_dir_f, f"checkpoint_{global_step}.bin")
model_to_save = model.module if hasattr(model, "module") else model
checkpoint = {
"model_state_dict": model_to_save.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"epoch": epoch,
"global_step": global_step,
"args": vars(args),
"wandb_id": wandb.run.id
}
if not args.train_full:
checkpoint["cur_file_num"] = cur_file_num
print(f"Saving checkpoint to {output_model_file}")
torch.save(checkpoint, output_model_file)
print(f"Checkpoint saved to {output_model_file}")
# save model for current training file
if accelerator.is_local_main_process:
epoch_avg_loss = train_loss / num_train_examples
epoch_ppl = math.exp(epoch_avg_loss)
wandb.log({
"epoch_loss": epoch_avg_loss,
"epoch_perplexity": epoch_ppl,
"epoch": epoch,
})#, step=global_step)
model_to_save = model.module if hasattr(model, "module") else model
output_dir_f = f"{args.output_dir}/HS{args.hidden_size}/EPOCH{epoch}/"
if not os.path.exists(output_dir_f):
os.makedirs(output_dir_f)
output_model_file = os.path.join(output_dir_f, "f{}_pytorch_model.bin".format(cur_file_num))
# only save the last model
if args.train_full or cur_file_num == args.end_file_number:
#torch.save(model_to_save.state_dict(), output_model_file)
checkpoint = {
"model_state_dict": model_to_save.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"epoch": epoch,
"global_step": global_step, # Save global step
"args": vars(args),
"wandb_id": wandb.run.id # 保存当前运行的wandb_id
}
if not args.train_full:
checkpoint["cur_file_num"] = cur_file_num
print(f"Saving model to {output_model_file}")
torch.save(checkpoint, output_model_file)
print(f"Model saved to {output_model_file}")
if args.train_full:
break
cur_file_num += 1
if cur_file_num > args.end_file_number:
break
if __name__ == "__main__":
main()
|