File size: 2,535 Bytes
c8e3cda 99766e7 c8e3cda 99766e7 c8e3cda 99766e7 c8e3cda 99766e7 c8e3cda 99766e7 c8e3cda 99766e7 c8e3cda 99766e7 c8e3cda 99766e7 c8e3cda 99766e7 c8e3cda 99766e7 c8e3cda 99766e7 c8e3cda 99766e7 c8e3cda 99766e7 c8e3cda 99766e7 c8e3cda 99766e7 c8e3cda 99766e7 c8e3cda 99766e7 c8e3cda 99766e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.1
model-index:
- name: mistral-instruct-dutch-syntax-10000
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-Instruct-v0.1-syntax2023-12-16-21-24
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on a Lassy_small dataset curated for dutch syntax.
10000 samples where used, batch-size 2, runtime 2 epochs.
It achieves the following results on the evaluation set:
- Loss: 0.2522
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 0.03
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.7075 | 0.11 | 500 | 0.6710 |
| 0.3569 | 0.21 | 1000 | 0.4348 |
| 0.3458 | 0.32 | 1500 | 0.3517 |
| 0.3325 | 0.42 | 2000 | 0.3151 |
| 0.3014 | 0.53 | 2500 | 0.2928 |
| 0.2304 | 0.63 | 3000 | 0.2817 |
| 0.2984 | 0.74 | 3500 | 0.2736 |
| 0.2283 | 0.84 | 4000 | 0.2680 |
| 0.2399 | 0.95 | 4500 | 0.2640 |
| 0.24 | 1.05 | 5000 | 0.2609 |
| 0.2039 | 1.16 | 5500 | 0.2588 |
| 0.2447 | 1.26 | 6000 | 0.2558 |
| 0.2377 | 1.37 | 6500 | 0.2544 |
| 0.2399 | 1.47 | 7000 | 0.2544 |
| 0.2424 | 1.58 | 7500 | 0.2532 |
| 0.2626 | 1.68 | 8000 | 0.2527 |
| 0.2346 | 1.79 | 8500 | 0.2524 |
| 0.2194 | 1.89 | 9000 | 0.2522 |
| 0.2123 | 2.0 | 9500 | 0.2522 |
| 0.2618 | 2.11 | 10000 | 0.2522 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.1
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0 |