File size: 1,900 Bytes
b86aeb5 b734c5c ba69fdc b734c5c ba69fdc b734c5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
- simplification
task_categories:
- text2text-generation
task_ids:
- text-simplification
language:
- nl
datasets:
- BramVanroy/chatgpt-dutch-simplification
metrics:
- rouge
- sari
---
# ul2-small-dutch-simplification-mai-2023
This model is intended to simplify Dutch sentences.
This model is a fine-tuned version of [yhavinga/ul2-small-dutch](https://huggingface.co/yhavinga/ul2-small-dutch) on
the [BramVanroy/chatgpt-dutch-simplification](https://huggingface.co/datasets/BramVanroy/chatgpt-dutch-simplification)
dataset.
The model was created in light of the master thesis of Charlotte Van de Velde in the Master of Science in Artificial
Intelligence (MAI) at KU Leuven in 2023. Dataset creation by Charlotte, model training by Bram.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006370158604635734
- train_batch_size: 20
- optimizer: Adafactor
- lr_scheduler_type: linear
- num_epochs: 37
### Training results
`eval` results are on the evaluation set, `predict` results are on the test set.
```json
{
"eval_gen_len": 21.555555555555557,
"eval_loss": 3.2290523052215576,
"eval_rouge1": 40.9663,
"eval_rouge2": 18.499,
"eval_rougeL": 34.9342,
"eval_rougeLsum": 34.9752,
"eval_sari": 52.4509,
"predict_gen_len": 21.796875,
"predict_loss": 3.063812494277954,
"predict_rouge1": 39.6138,
"predict_rouge2": 17.1242,
"predict_rougeL": 35.4629,
"predict_rougeLsum": 35.3679,
"predict_sari": 51.7538
}
```
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|