File size: 1,900 Bytes
b86aeb5
b734c5c
 
 
 
 
 
 
 
ba69fdc
b734c5c
 
 
ba69fdc
b734c5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
  - simplification
task_categories:
  - text2text-generation
task_ids:
  - text-simplification
language:
  - nl
datasets:
  - BramVanroy/chatgpt-dutch-simplification
metrics:
  - rouge
  - sari
---


# ul2-small-dutch-simplification-mai-2023

This model is intended to simplify Dutch sentences.

This model is a fine-tuned version of [yhavinga/ul2-small-dutch](https://huggingface.co/yhavinga/ul2-small-dutch) on
the [BramVanroy/chatgpt-dutch-simplification](https://huggingface.co/datasets/BramVanroy/chatgpt-dutch-simplification)
dataset. 

The model was created in light of the master thesis of Charlotte Van de Velde in the Master of Science in Artificial
Intelligence (MAI) at KU Leuven in 2023. Dataset creation by Charlotte, model training by Bram.


## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0006370158604635734
- train_batch_size: 20
- optimizer: Adafactor
- lr_scheduler_type: linear
- num_epochs: 37


### Training results

`eval` results are on the evaluation set, `predict` results are on the test set.

```json
{
    "eval_gen_len": 21.555555555555557,
    "eval_loss": 3.2290523052215576,
    "eval_rouge1": 40.9663,
    "eval_rouge2": 18.499,
    "eval_rougeL": 34.9342,
    "eval_rougeLsum": 34.9752,
    "eval_sari": 52.4509,
  
    "predict_gen_len": 21.796875,
    "predict_loss": 3.063812494277954,
    "predict_rouge1": 39.6138,
    "predict_rouge2": 17.1242,
    "predict_rougeL": 35.4629,
    "predict_rougeLsum": 35.3679,
    "predict_sari": 51.7538
}
```


### Framework versions

- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3