File size: 2,408 Bytes
6a6d6e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
language:
- mn
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: mongolian-bert-base-multilingual-cased-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mongolian-bert-base-multilingual-cased-ner

This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1428
- Precision: 0.9085
- Recall: 0.9203
- F1: 0.9143
- Accuracy: 0.9762

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1768        | 1.0   | 477  | 0.0930          | 0.8660    | 0.8939 | 0.8797 | 0.9704   |
| 0.0856        | 2.0   | 954  | 0.0879          | 0.8849    | 0.9082 | 0.8964 | 0.9736   |
| 0.0583        | 3.0   | 1431 | 0.0879          | 0.8905    | 0.9111 | 0.9007 | 0.9749   |
| 0.0404        | 4.0   | 1908 | 0.1053          | 0.8945    | 0.9136 | 0.9040 | 0.9731   |
| 0.0288        | 5.0   | 2385 | 0.1096          | 0.9044    | 0.9144 | 0.9094 | 0.9755   |
| 0.0196        | 6.0   | 2862 | 0.1237          | 0.9045    | 0.9176 | 0.9110 | 0.9754   |
| 0.014         | 7.0   | 3339 | 0.1289          | 0.9066    | 0.9187 | 0.9126 | 0.9757   |
| 0.0099        | 8.0   | 3816 | 0.1342          | 0.9057    | 0.9196 | 0.9126 | 0.9760   |
| 0.0065        | 9.0   | 4293 | 0.1396          | 0.9095    | 0.9195 | 0.9145 | 0.9761   |
| 0.005         | 10.0  | 4770 | 0.1428          | 0.9085    | 0.9203 | 0.9143 | 0.9762   |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3