File size: 21,547 Bytes
a7d3800
 
 
 
 
 
a7867ab
a7d3800
 
 
 
 
 
7a8f8e3
 
a7d3800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2cd40c
a7d3800
f2cd40c
a7d3800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a8f8e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7d3800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a8f8e3
a7d3800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a8f8e3
a7d3800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c2c969
a7d3800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
from original import *
import shutil, glob
from easyfuncs import download_from_url, CachedModels
os.makedirs("dataset",exist_ok=True)
model_library = CachedModels()

with gr.Blocks(title="RVC V2",theme="Blane187/fuchsia") as app:
    with gr.Row():
        gr.HTML("<img  src='file/a.png' alt='image'>")
    with gr.Tabs():
        with gr.TabItem("Inference"):
            with gr.Row():
                voice_model = gr.Dropdown(label="Model Voice", choices=sorted(names), value=lambda:sorted(names)[0] if len(sorted(names)) > 0 else '', interactive=True)
                file_index2 = gr.Dropdown(label="Change Index",choices=sorted(index_paths), interactive=True,value=sorted(index_paths)[0] if len(sorted(index_paths)) > 0 else '')
            with gr.Row():
                refresh_button = gr.Button("Refresh", variant="primary")
                spk_item = gr.Slider(
                    minimum=0,
                    maximum=2333,
                    step=1,
                    label="Speaker ID",
                    value=0,
                    visible=False,
                    interactive=False,
                )
                vc_transform0 = gr.Number(
                    label="Pitch", 
                    value=0
                )
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
                    with gr.Row():
                        record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
                    with gr.Row():
                        paths_for_files = lambda path:[os.path.abspath(os.path.join(path, f)) for f in os.listdir(path) if os.path.splitext(f)[1].lower() in ('.mp3', '.wav', '.flac', '.ogg')]
                        input_audio0 = gr.Dropdown(
                            label="Input Path",
                            value=paths_for_files('audios')[0] if len(paths_for_files('audios')) > 0 else '',
                            choices=paths_for_files('audios'), # Only show absolute paths for audio files ending in .mp3, .wav, .flac or .ogg
                            allow_custom_value=True
                        )
                    with gr.Row():
                        audio_player = gr.Audio()
                        input_audio0.change(
                            inputs=[input_audio0],
                            outputs=[audio_player],
                            fn=lambda path: {"value":path,"__type__":"update"} if os.path.exists(path) else None
                        )
                        record_button.stop_recording(
                            fn=lambda audio:audio, #TODO save wav lambda
                            inputs=[record_button], 
                            outputs=[input_audio0])
                        dropbox.upload(
                            fn=lambda audio:audio.name,
                            inputs=[dropbox], 
                            outputs=[input_audio0])
                with gr.Column():
                    with gr.Accordion("General Settings", open=False):
                        f0method0 = gr.Radio(
                            label="Method",
                            choices=["pm", "harvest", "crepe", "rmvpe"]
                            if config.dml == False
                            else ["pm", "harvest", "rmvpe"],
                            value="rmvpe",
                            interactive=True,
                        )
                        filter_radius0 = gr.Slider(
                            minimum=0,
                            maximum=7,
                            label="Breathiness Reduction (Harvest only)",
                            value=3,
                            step=1,
                            interactive=True,
                        )
                        resample_sr0 = gr.Slider(
                            minimum=0,
                            maximum=48000,
                            label="Resample",
                            value=0,
                            step=1,
                            interactive=True,
                            visible=False
                        )
                        rms_mix_rate0 = gr.Slider(
                            minimum=0,
                            maximum=1,
                            label="Volume Normalization",
                            value=0,
                            interactive=True,
                        )
                        protect0 = gr.Slider(
                            minimum=0,
                            maximum=0.5,
                            label="Breathiness Protection (0 is enabled, 0.5 is disabled)",
                            value=0.33,
                            step=0.01,
                            interactive=True,
                        )
                        if voice_model != None: vc.get_vc(voice_model.value,protect0,protect0)
                        file_index1 = gr.Textbox(
                            label="Index Path",
                            interactive=True,
                            visible=False#Not used here
                        )
                        refresh_button.click(
                            fn=change_choices,
                            inputs=[],
                            outputs=[voice_model, file_index2],
                            api_name="infer_refresh",
                        )
                        refresh_button.click(
                            fn=lambda:{"choices":paths_for_files('audios'),"__type__":"update"}, #TODO check if properly returns a sorted list of audio files in the 'audios' folder that have the extensions '.wav', '.mp3', '.ogg', or '.flac'
                            inputs=[],
                            outputs = [input_audio0],   
                        )
                        refresh_button.click(
                            fn=lambda:{"value":paths_for_files('audios')[0],"__type__":"update"} if len(paths_for_files('audios')) > 0 else {"value":"","__type__":"update"}, #TODO check if properly returns a sorted list of audio files in the 'audios' folder that have the extensions '.wav', '.mp3', '.ogg', or '.flac'
                            inputs=[],
                            outputs = [input_audio0],   
                        )
                    with gr.Accordion("Change Index", open=False):
                        index_rate1 = gr.Slider(
                            minimum=0,
                            maximum=1,
                            label="Index Strength",
                            value=0.5,
                            interactive=True,
                        )
                with gr.Row():
                    f0_file = gr.File(label="F0 Path", visible=False) 
                with gr.Row():
                    vc_output2 = gr.Audio(label="Output", scale=5)                    
                with gr.Row():
                    vc_output1 = gr.Textbox(label="Information")
                with gr.Row():
                    but0 = gr.Button(value="Convert", variant="primary")
                         
                    
            
                but0.click(
                    vc.vc_single,  
                    [
                        spk_item,
                        input_audio0,
                        vc_transform0,
                        f0_file,
                        f0method0,
                        file_index1,
                        file_index2,
                        index_rate1,
                        filter_radius0,
                        resample_sr0,
                        rms_mix_rate0,
                        protect0,
                    ],
                    [vc_output1, vc_output2],
                    api_name="infer_convert",
                )  
                voice_model.change(
                    fn=vc.get_vc,
                    inputs=[voice_model, protect0, protect0],
                    outputs=[spk_item, protect0, protect0, file_index2, file_index2],
                    api_name="infer_change_voice",
                )
        with gr.TabItem("Download Models"):
            with gr.Row():
                url_input = gr.Textbox(label="URL to model", value="",placeholder="https://...", scale=6)
                name_output = gr.Textbox(label="Save as", value="",placeholder="MyModel",scale=2)
                url_download = gr.Button(value="Download Model",scale=2)
                url_download.click(
                    inputs=[url_input,name_output],
                    outputs=[url_input],
                    fn=download_from_url,
                )
            with gr.Row():
                model_browser = gr.Dropdown(choices=list(model_library.models.keys()),label="OR Search Models (Quality UNKNOWN)",scale=5)
            with gr.Row():
                download_from_browser = gr.Button(value="Get",scale=2)
                download_from_browser.click(
                    inputs=[model_browser],
                    outputs=[model_browser],
                    fn=lambda model: download_from_url(model_library.models[model],model),
                )
        with gr.TabItem("Train"):
            with gr.Row():
                with gr.Column():
                    training_name = gr.Textbox(label="Name your model", value="My-Voice",placeholder="My-Voice")
                    np7 = gr.Slider(
                        minimum=0,
                        maximum=config.n_cpu,
                        step=1,
                        label="Number of CPU processes used to extract pitch features",
                        value=int(np.ceil(config.n_cpu / 1.5)),
                        interactive=True,
                    )
                    sr2 = gr.Radio(
                        label="Sampling Rate",
                        choices=["40k", "32k"],
                        value="32k",
                        interactive=True,
                    )
                    if_f0_3 = gr.Radio(
                        label="Will your model be used for singing? If not, you can ignore this.",
                        choices=[True, False],
                        value=True,
                        interactive=True,
                        visible=False
                    )
                    version19 = gr.Radio(
                        label="Version",
                        choices=["v1", "v2"],
                        value="v2",
                        interactive=True,
                        visible=False,
                    )
                    dataset_folder = gr.Textbox(
                        label="dataset folder", value='dataset'
                    )
                    easy_uploader = gr.Files(label="Drop your audio files here",file_types=['audio'])
                    with gr.Accordion(label="button if you don't set your training settings", open=False):
                        but1 = gr.Button("1. Process", variant="primary")
                        but2 = gr.Button("2. Extract Features", variant="primary")
                        but4 = gr.Button("3. Train Index", variant="primary")
                        but3 = gr.Button("4. Train Model", variant="primary")
                        Information_box = gr.Textbox(label="Information", value="",visible=True)
                    easy_uploader.upload(inputs=[dataset_folder],outputs=[],fn=lambda folder:os.makedirs(folder,exist_ok=True))
                    easy_uploader.upload(
                        fn=lambda files,folder: [shutil.copy2(f.name,os.path.join(folder,os.path.split(f.name)[1])) for f in files] if folder != "" else gr.Warning('Please enter a folder name for your dataset'),
                        inputs=[easy_uploader, dataset_folder], 
                        outputs=[])
                    gpus6 = gr.Textbox(
                        label="Enter the GPU numbers to use separated by -, (e.g. 0-1-2)",
                        value=gpus,
                        interactive=True,
                        visible=F0GPUVisible,
                    )
                    gpu_info9 = gr.Textbox(
                        label="GPU Info", value=gpu_info, visible=F0GPUVisible
                    )
                    spk_id5 = gr.Slider(
                        minimum=0,
                        maximum=4,
                        step=1,
                        label="Speaker ID",
                        value=0,
                        interactive=True,
                        visible=False
                    )
                    but1.click(
                        preprocess_dataset,
                        [dataset_folder, training_name, sr2, np7],
                        [Information_box],
                        api_name="train_preprocess",
                    ) 
                with gr.Column():
                    f0method8 = gr.Radio(
                        label="F0 extraction method",
                        choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
                        value="rmvpe_gpu",
                        interactive=True,
                    )
                    gpus_rmvpe = gr.Textbox(
                        label="GPU numbers to use separated by -, (e.g. 0-1-2)",
                        value="%s-%s" % (gpus, gpus),
                        interactive=True,
                        visible=F0GPUVisible,
                    )
                    f0method8.change(
                        fn=change_f0_method,
                        inputs=[f0method8],
                        outputs=[gpus_rmvpe],
                    )
                    but2.click(
                        extract_f0_feature,
                        [
                            gpus6,
                            np7,
                            f0method8,
                            if_f0_3,
                            training_name,
                            version19,
                            gpus_rmvpe,
                        ],
                        [Information_box],
                        api_name="train_extract_f0_feature",
                    )
                with gr.Column():
                    total_epoch11 = gr.Slider(
                        minimum=2,
                        maximum=1000,
                        step=1,
                        label="Epochs (more epochs may improve quality but takes longer)",
                        value=150,
                        interactive=True,
                    )
                    with gr.Accordion(label="General Settings", open=False):
                        gpus16 = gr.Textbox(
                            label="GPUs separated by -, (e.g. 0-1-2)",
                            value="0",
                            interactive=True,
                            visible=True
                        )
                        save_epoch10 = gr.Slider(
                            minimum=1,
                            maximum=50,
                            step=1,
                            label="Weight Saving Frequency",
                            value=25,
                            interactive=True,
                        )
                        batch_size12 = gr.Slider(
                            minimum=1,
                            maximum=40,
                            step=1,
                            label="Batch Size",
                            value=default_batch_size,
                            interactive=True,
                        )
                        if_save_latest13 = gr.Radio(
                            label="Only save the latest model",
                            choices=["yes", "no"],
                            value="yes",
                            interactive=True,
                            visible=False
                        )
                        if_cache_gpu17 = gr.Radio(
                            label="If your dataset is UNDER 10 minutes, cache it to train faster",
                            choices=["yes", "no"],
                            value="no",
                            interactive=True,
                        )
                        if_save_every_weights18 = gr.Radio(
                            label="Save small model at every save point",
                            choices=["yes", "no"],
                            value="yes",
                            interactive=True,
                        )
                    with gr.Accordion(label="Change pretrains", open=False):
                        pretrained = lambda sr, letter: [os.path.abspath(os.path.join('assets/pretrained_v2', file)) for file in os.listdir('assets/pretrained_v2') if file.endswith('.pth') and sr in file and letter in file]
                        pretrained_G14 = gr.Dropdown(
                            label="pretrained G",
                            # Get a list of all pretrained G model files in assets/pretrained_v2 that end with .pth
                            choices = pretrained(sr2.value, 'G'),
                            value=pretrained(sr2.value, 'G')[0] if len(pretrained(sr2.value, 'G')) > 0 else '',
                            interactive=True,
                            visible=True
                        )
                        pretrained_D15 = gr.Dropdown(
                            label="pretrained D",
                            choices = pretrained(sr2.value, 'D'),
                            value= pretrained(sr2.value, 'D')[0] if len(pretrained(sr2.value, 'G')) > 0 else '',
                            visible=True,
                            interactive=True
                        )
                    with gr.Row():
                        download_model = gr.Button('5.Download Model')
                    with gr.Row():
                        model_files = gr.Files(label='Your Model and Index file can be downloaded here:')
                        download_model.click(
                            fn=lambda name: os.listdir(f'assets/weights/{name}') + glob.glob(f'logs/{name.split(".")[0]}/added_*.index'),
                            inputs=[training_name], 
                            outputs=[model_files, Information_box])
                    with gr.Row():
                        sr2.change(
                            change_sr2,
                            [sr2, if_f0_3, version19],
                            [pretrained_G14, pretrained_D15],
                        )
                        version19.change(
                            change_version19,
                            [sr2, if_f0_3, version19],
                            [pretrained_G14, pretrained_D15, sr2],
                        )
                        if_f0_3.change(
                            change_f0,
                            [if_f0_3, sr2, version19],
                            [f0method8, pretrained_G14, pretrained_D15],
                        )
                    with gr.Row():
                        but5 = gr.Button("1 Click Training", variant="primary", visible=False)
                        but3.click(
                            click_train,
                            [
                                training_name,
                                sr2,
                                if_f0_3,
                                spk_id5,
                                save_epoch10,
                                total_epoch11,
                                batch_size12,
                                if_save_latest13,
                                pretrained_G14,
                                pretrained_D15,
                                gpus16,
                                if_cache_gpu17,
                                if_save_every_weights18,
                                version19,
                            ],
                            Information_box,
                            api_name="train_start",
                        )
                        but4.click(train_index, [training_name, version19], Information_box)
                        but5.click(
                            train1key,
                            [
                                training_name,
                                sr2,
                                if_f0_3,
                                dataset_folder,
                                spk_id5,
                                np7,
                                f0method8,
                                save_epoch10,
                                total_epoch11,
                                batch_size12,
                                if_save_latest13,
                                pretrained_G14,
                                pretrained_D15,
                                gpus16,
                                if_cache_gpu17,
                                if_save_every_weights18,
                                version19,
                                gpus_rmvpe,
                            ],
                            Information_box,
                            api_name="train_start_all",
                        )

    if config.iscolab:
        app.queue(concurrency_count=511, max_size=1022).launch(share=True)
    else:
        app.queue(concurrency_count=511, max_size=1022).launch(
            server_name="0.0.0.0",
            inbrowser=not config.noautoopen,
            server_port=config.listen_port,
            quiet=True,
        )