File size: 8,732 Bytes
4a9ad28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.utils as vutils
from datasets import load_dataset
from torch.utils.data import DataLoader, TensorDataset
from schedulefree import AdamWScheduleFree
from torch.utils.tensorboard import SummaryWriter
from safetensors.torch import save_file, load_file
import os, time
from models import AsymmetricResidualUDiT
from torch.cuda.amp import autocast

def preload_dataset(image_size=256, device="cuda"):
    """Preload and cache the entire dataset in GPU memory"""
    print("Loading and preprocessing dataset...")
    #dataset = load_dataset("jiovine/pixel-art-nouns-2k", split="train")
    dataset = load_dataset("reach-vb/pokemon-blip-captions", split="train")
    
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Resize((image_size, image_size), antialias=True),
        transforms.Lambda(lambda x: (x * 2) - 1)  # Scale to [-1, 1]
    ])
    
    all_images = []
    for example in dataset:
        img_tensor = transform(example['image'])
        all_images.append(img_tensor)
        
    # Stack entire dataset onto gpu
    images_tensor = torch.stack(all_images).to(device)
    print(f"Dataset loaded: {images_tensor.shape} ({images_tensor.element_size() * images_tensor.nelement() / 1024/1024:.2f} MB)")
    
    return TensorDataset(images_tensor)

def count_parameters(model):
    total_params = sum(p.numel() for p in model.parameters())
    print(f'Total parameters: {total_params:,} ({total_params/1e6:.2f}M)')
    
def save_checkpoint(model, optimizer, filename="checkpoint.safetensors"):
    model_state = model.state_dict()
    save_file(model_state, filename)

def load_checkpoint(model, optimizer, filename="checkpoint.safetensors"):
    model_state = load_file(filename)
    model.load_state_dict(model_state)

# https://arxiv.org/abs/2210.02747
class OptimalTransportLinearFlowGenerator():
    def __init__(self, sigma_min=0.001):
        self.sigma_min = sigma_min
        
    def loss(self, model, x1, device):
        batch_size = x1.shape[0]
        
        # Sample t uniform in [0,1]
        t = torch.rand(batch_size, 1, 1, 1, device=device)
        
        # Sample noise
        x0 = torch.randn_like(x1)
        x1 = x1
        
        # Compute OT path interpolation (equation 22)
        sigma_t = 1 - (1 - self.sigma_min) * t
        mu_t = t * x1
        x_t = sigma_t * x0 + mu_t
        
        # Compute target (equation 23)
        target = x1 - (1 - self.sigma_min) * x0
        
        v_t = model(x_t, t)
        loss = F.mse_loss(v_t, target)
        
        return loss

def write_logs(writer, model, loss, batch_idx, epoch, epoch_time, batch_size, lr, log_gradients=True):
    """
    TensorBoard logging
    
    Args:
        writer: torch.utils.tensorboard.SummaryWriter instance
        model: torch.nn.Module - the model being trained
        loss: float or torch.Tensor - the loss value to log
        batch_idx: int - current batch index
        epoch: int - current epoch
        epoch_time: float - time taken for epoch
        batch_size: int - current batch size
        lr: float - current learning rate
        samples: Optional[torch.Tensor] - generated samples to log (only passed every 50 epochs)
        log_gradients: bool - whether to log gradient norms
    """
    total_steps = epoch * batch_idx
    
    writer.add_scalar('Loss/batch', loss, total_steps)
    writer.add_scalar('Time/epoch', epoch_time, epoch)
    writer.add_scalar('Training/batch_size', batch_size, epoch)
    writer.add_scalar('Training/learning_rate', lr, epoch)
    
    if log_gradients:
        total_norm = 0.0
        for p in model.parameters():
            if p.grad is not None:
                param_norm = p.grad.detach().data.norm(2)
                total_norm += param_norm.item() ** 2
        total_norm = total_norm ** 0.5
        writer.add_scalar('Gradients/total_norm', total_norm, total_steps)
    
def train_udit_flow(num_epochs=5000, initial_batch_sizes=[8, 16, 32, 64, 128], epoch_batch_drop_at=40, device="cuda", dtype=torch.float32):
    dataset = preload_dataset(device=device)
    temp_loader = DataLoader(dataset, batch_size=initial_batch_sizes[0], shuffle=True)
    first_batch = next(iter(temp_loader))
    image_shape = first_batch[0].shape[1:]
    
    writer = SummaryWriter('logs/current_run')
    
    model = AsymmetricResidualUDiT(
        in_channels=3,
        base_channels=128,
        num_levels=3,
        patch_size=4,
        encoder_blocks=3,
        decoder_blocks=7,
        encoder_transformer_thresh=2,
        decoder_transformer_thresh=4,
        mid_blocks=8
    ).to(device).to(dtype)
    model.train()
    
    count_parameters(model)
    optimizer = AdamWScheduleFree(
        model.parameters(),
        lr=1e-4,
        warmup_steps=100
    )
    optimizer.train()
    
    current_batch_sizes = initial_batch_sizes.copy()
    next_drop_epoch = epoch_batch_drop_at
    interval_multiplier = 2
    
    torch.set_float32_matmul_precision('high')
    model = torch.compile(
        model,
        backend='inductor',
        mode='max-autotune',
        fullgraph=True,
    )
    
    flow_transport = OptimalTransportLinearFlowGenerator(sigma_min=0.001)

    for epoch in range(num_epochs):
        epoch_start_time = time.time()
        total_loss = 0
        
        # Batch size decay logic
        # Geomtric growth, every X*N+(X-1*N+...) use the number batch size in the list.
        if epoch > 0 and epoch == next_drop_epoch and len(current_batch_sizes) > 1:
            current_batch_sizes.pop()
            next_interval = epoch_batch_drop_at * interval_multiplier
            next_drop_epoch += next_interval
            interval_multiplier += 1
            print(f"\nEpoch {epoch}: Reducing batch size to {current_batch_sizes[-1]}")
            print(f"Next drop will occur at epoch {next_drop_epoch} (interval: {next_interval})")
            
        current_batch_size = current_batch_sizes[-1]
        dataloader = DataLoader(dataset, batch_size=current_batch_size, shuffle=True)
        curr_lr = optimizer.param_groups[0]['lr']
        
        with torch.amp.autocast('cuda', dtype=dtype):
            for batch_idx, batch in enumerate(dataloader):
                x1 = batch[0]
                batch_size = x1.shape[0]
                
                loss = flow_transport.loss(model, x1, device)
                
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                total_loss += loss.item()
            
        avg_loss = total_loss / len(dataloader)
        
        epoch_time = time.time() - epoch_start_time
        print(f"Epoch {epoch}, Took: {epoch_time:.2f}s, Batch Size: {current_batch_size}, "
              f"Average Loss: {avg_loss:.4f}, Learning Rate: {curr_lr:.6f}")

        write_logs(writer, model, avg_loss, batch_idx, epoch, epoch_time, current_batch_size, curr_lr)
        if (epoch + 1) % 50 == 0:
            with torch.amp.autocast('cuda', dtype=dtype):
                sampling_start_time = time.time()
                samples = sample(model, device=device, dtype=dtype)
                os.makedirs("samples", exist_ok=True)
                vutils.save_image(samples, f"samples/epoch_{epoch}.png", nrow=4, padding=2)
                
                sample_time = time.time() - sampling_start_time
                print(f"Sampling took: {sample_time:.2f}s")
                
        if (epoch + 1) % 200 == 0:
            save_checkpoint(model, optimizer, f"step_{epoch}.safetensors")

    return model

def sample(model, n_samples=16, n_steps=50, image_size=256, device="cuda", sigma_min=0.001, dtype=torch.float32):
    with torch.amp.autocast('cuda', dtype=dtype):
        
        x = torch.randn(n_samples, 3, image_size, image_size, device=device)
        ts = torch.linspace(0, 1, n_steps, device=device)
        dt = 1/n_steps
        
        # Forward Euler Integration step 0..1
        with torch.no_grad():
            for i in range(len(ts)):
                t = ts[i]
                t_input = t.repeat(n_samples, 1, 1, 1)
                
                v_t = model(x, t_input)
                
                x = x + v_t * dt
    
    return x.float()

if __name__ == "__main__":
    device = "cuda" if torch.cuda.is_available() else "cpu"
    print(f"Using device: {device}")
    
    model = train_udit_flow(
        device=device,
        initial_batch_sizes=[8, 16],
        epoch_batch_drop_at=600,
        dtype=torch.float32
    )
    
    print("Training complete! Samples saved in 'samples' directory")