File size: 1,340 Bytes
600bb4a
b9e5e56
 
 
 
 
 
 
 
 
1c8d634
b9e5e56
 
 
 
 
 
 
 
20b9d75
 
 
1571c14
20b9d75
 
 
f95751b
 
 
 
20b9d75
 
 
 
 
 
47df75d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20b9d75
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
annotations_creators: []
language:
- ro
language_creators:
- machine-generated
license: 
- apache-2.0
multilinguality:
- monolingual
pretty_name: BlackKakapo/t5-small-grammar-ro-root
size_categories:
- 100K<n<1M
source_datasets:
- original
tags: []
task_categories:
- text2text-generation
task_ids: []
---

# Romanian grammar
![v1.0](https://img.shields.io/badge/V.1-31.03.2023-brightgreen)

This model is trained on sentences with words in the root form. To bring the words to a syntactically correct form.

# Prefix

grammar: text

### How to use
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("BlackKakapo/t5-small-grammar-ro-root")
model = AutoModelForSeq2SeqLM.from_pretrained("BlackKakapo/t5-small-grammar-ro-root")
```

### Or
```cmd
pip install happytransformer
```

```python
from happytransformer import TTSettings, HappyTextToText

happy_tt_save = HappyTextToText('T5',r"BlackKakapo/t5-small-grammar-ro")
beam_settings =  TTSettings(num_beams=10, min_length=10, max_length=100)
```
### Generate
```python
sent = "As dori ca sa corecteze toate greșelile."
prefix = "grammar: "
example = prefix + sent

result = happy_tt_save.generate_text(example, args=beam_settings)

print(result.text)
```
### Output
```out
Aș dori ca să corecteze toate greșelile.
```