File size: 2,175 Bytes
ac839f7
 
304eb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
917d8e1
304eb70
 
 
 
 
 
 
917d8e1
304eb70
917d8e1
ac839f7
 
304eb70
 
ac839f7
304eb70
ac839f7
304eb70
 
 
 
ac839f7
304eb70
ac839f7
304eb70
ac839f7
304eb70
ac839f7
304eb70
ac839f7
304eb70
ac839f7
304eb70
ac839f7
304eb70
ac839f7
304eb70
ac839f7
304eb70
 
 
 
 
 
 
 
 
ac839f7
304eb70
ac839f7
304eb70
 
 
 
 
 
 
 
ac839f7
 
304eb70
ac839f7
304eb70
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: transformers
language:
- kz
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- Commonvoice-kazakh
metrics:
- wer
model-index:
- name: Kammi
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: BilalS96/Commonvoice-kazakh
      type: Commonvoice-kazakh
      config: kk
      split: None
      args: 'config: kzk, split: test'
    metrics:
    - type: wer
      value: 1.0
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Kammi

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the BilalS96/Commonvoice-kazakh dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2408
- Wer: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:---:|
| 3.255         | 4.3860  | 500  | 3.2401          | 1.0 |
| 3.2362        | 8.7719  | 1000 | 3.2517          | 1.0 |
| 3.2342        | 13.1579 | 1500 | 3.2470          | 1.0 |
| 3.2288        | 17.5439 | 2000 | 3.2386          | 1.0 |
| 3.2227        | 21.9298 | 2500 | 3.2335          | 1.0 |
| 3.2373        | 26.3158 | 3000 | 3.2408          | 1.0 |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0