File size: 2,175 Bytes
ac839f7 304eb70 917d8e1 304eb70 917d8e1 304eb70 917d8e1 ac839f7 304eb70 ac839f7 304eb70 ac839f7 304eb70 ac839f7 304eb70 ac839f7 304eb70 ac839f7 304eb70 ac839f7 304eb70 ac839f7 304eb70 ac839f7 304eb70 ac839f7 304eb70 ac839f7 304eb70 ac839f7 304eb70 ac839f7 304eb70 ac839f7 304eb70 ac839f7 304eb70 ac839f7 304eb70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
library_name: transformers
language:
- kz
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- Commonvoice-kazakh
metrics:
- wer
model-index:
- name: Kammi
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: BilalS96/Commonvoice-kazakh
type: Commonvoice-kazakh
config: kk
split: None
args: 'config: kzk, split: test'
metrics:
- type: wer
value: 1.0
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Kammi
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the BilalS96/Commonvoice-kazakh dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2408
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:---:|
| 3.255 | 4.3860 | 500 | 3.2401 | 1.0 |
| 3.2362 | 8.7719 | 1000 | 3.2517 | 1.0 |
| 3.2342 | 13.1579 | 1500 | 3.2470 | 1.0 |
| 3.2288 | 17.5439 | 2000 | 3.2386 | 1.0 |
| 3.2227 | 21.9298 | 2500 | 3.2335 | 1.0 |
| 3.2373 | 26.3158 | 3000 | 3.2408 | 1.0 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|