|
--- |
|
license: apache-2.0 |
|
base_model: facebook/deit-base-distilled-patch16-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: deit-base-distilled-patch16-224-hasta-55-fold3 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6944444444444444 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deit-base-distilled-patch16-224-hasta-55-fold3 |
|
|
|
This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8865 |
|
- Accuracy: 0.6944 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 100 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-------:|:----:|:---------------:|:--------:| |
|
| No log | 0.5714 | 1 | 1.3455 | 0.3611 | |
|
| No log | 1.7143 | 3 | 1.1600 | 0.3889 | |
|
| No log | 2.8571 | 5 | 1.1451 | 0.3889 | |
|
| No log | 4.0 | 7 | 1.1113 | 0.4167 | |
|
| No log | 4.5714 | 8 | 1.1294 | 0.3611 | |
|
| 1.114 | 5.7143 | 10 | 1.1000 | 0.4722 | |
|
| 1.114 | 6.8571 | 12 | 1.0526 | 0.5 | |
|
| 1.114 | 8.0 | 14 | 1.0222 | 0.5 | |
|
| 1.114 | 8.5714 | 15 | 1.0203 | 0.4444 | |
|
| 1.114 | 9.7143 | 17 | 0.9883 | 0.5556 | |
|
| 1.114 | 10.8571 | 19 | 0.9686 | 0.5 | |
|
| 0.928 | 12.0 | 21 | 0.9622 | 0.5556 | |
|
| 0.928 | 12.5714 | 22 | 0.9396 | 0.5556 | |
|
| 0.928 | 13.7143 | 24 | 0.9678 | 0.5556 | |
|
| 0.928 | 14.8571 | 26 | 0.9045 | 0.6389 | |
|
| 0.928 | 16.0 | 28 | 0.8842 | 0.6667 | |
|
| 0.928 | 16.5714 | 29 | 0.8690 | 0.6389 | |
|
| 0.7807 | 17.7143 | 31 | 0.8539 | 0.6389 | |
|
| 0.7807 | 18.8571 | 33 | 0.9446 | 0.6389 | |
|
| 0.7807 | 20.0 | 35 | 0.8785 | 0.6667 | |
|
| 0.7807 | 20.5714 | 36 | 0.8500 | 0.6389 | |
|
| 0.7807 | 21.7143 | 38 | 0.9317 | 0.6389 | |
|
| 0.6419 | 22.8571 | 40 | 0.9105 | 0.6111 | |
|
| 0.6419 | 24.0 | 42 | 0.9513 | 0.6111 | |
|
| 0.6419 | 24.5714 | 43 | 0.9155 | 0.6111 | |
|
| 0.6419 | 25.7143 | 45 | 0.8752 | 0.6389 | |
|
| 0.6419 | 26.8571 | 47 | 0.8911 | 0.6111 | |
|
| 0.6419 | 28.0 | 49 | 0.8772 | 0.5833 | |
|
| 0.5401 | 28.5714 | 50 | 0.8496 | 0.5833 | |
|
| 0.5401 | 29.7143 | 52 | 0.8562 | 0.6667 | |
|
| 0.5401 | 30.8571 | 54 | 0.8377 | 0.6111 | |
|
| 0.5401 | 32.0 | 56 | 0.9969 | 0.6111 | |
|
| 0.5401 | 32.5714 | 57 | 1.0985 | 0.5833 | |
|
| 0.5401 | 33.7143 | 59 | 0.9632 | 0.5833 | |
|
| 0.4658 | 34.8571 | 61 | 0.8651 | 0.6389 | |
|
| 0.4658 | 36.0 | 63 | 0.8731 | 0.6111 | |
|
| 0.4658 | 36.5714 | 64 | 0.9148 | 0.5556 | |
|
| 0.4658 | 37.7143 | 66 | 1.0383 | 0.6111 | |
|
| 0.4658 | 38.8571 | 68 | 0.9203 | 0.6111 | |
|
| 0.3816 | 40.0 | 70 | 0.8720 | 0.6389 | |
|
| 0.3816 | 40.5714 | 71 | 0.8789 | 0.6389 | |
|
| 0.3816 | 41.7143 | 73 | 0.8742 | 0.6667 | |
|
| 0.3816 | 42.8571 | 75 | 0.8865 | 0.6944 | |
|
| 0.3816 | 44.0 | 77 | 0.8931 | 0.6667 | |
|
| 0.3816 | 44.5714 | 78 | 0.9036 | 0.6667 | |
|
| 0.337 | 45.7143 | 80 | 0.9182 | 0.6389 | |
|
| 0.337 | 46.8571 | 82 | 0.9406 | 0.6389 | |
|
| 0.337 | 48.0 | 84 | 0.9587 | 0.6667 | |
|
| 0.337 | 48.5714 | 85 | 0.9697 | 0.6389 | |
|
| 0.337 | 49.7143 | 87 | 0.9818 | 0.6667 | |
|
| 0.337 | 50.8571 | 89 | 0.9692 | 0.6389 | |
|
| 0.2958 | 52.0 | 91 | 0.9426 | 0.6389 | |
|
| 0.2958 | 52.5714 | 92 | 0.9374 | 0.6667 | |
|
| 0.2958 | 53.7143 | 94 | 0.9338 | 0.6389 | |
|
| 0.2958 | 54.8571 | 96 | 0.9337 | 0.6389 | |
|
| 0.2958 | 56.0 | 98 | 0.9361 | 0.6389 | |
|
| 0.2958 | 56.5714 | 99 | 0.9377 | 0.6389 | |
|
| 0.2914 | 57.1429 | 100 | 0.9385 | 0.6389 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|