metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: deit-base-distilled-patch16-224-55-fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.810126582278481
deit-base-distilled-patch16-224-55-fold4
This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.8042
- Accuracy: 0.8101
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.8571 | 3 | 0.8297 | 0.5063 |
No log | 2.0 | 7 | 0.6548 | 0.6203 |
0.6826 | 2.8571 | 10 | 0.6513 | 0.5190 |
0.6826 | 4.0 | 14 | 0.6024 | 0.7342 |
0.6826 | 4.8571 | 17 | 0.6473 | 0.5823 |
0.6198 | 6.0 | 21 | 0.5717 | 0.6835 |
0.6198 | 6.8571 | 24 | 0.7837 | 0.5570 |
0.6198 | 8.0 | 28 | 0.5272 | 0.7595 |
0.5409 | 8.8571 | 31 | 0.5162 | 0.7342 |
0.5409 | 10.0 | 35 | 0.6156 | 0.6709 |
0.5409 | 10.8571 | 38 | 0.5844 | 0.6582 |
0.5177 | 12.0 | 42 | 0.7013 | 0.6709 |
0.5177 | 12.8571 | 45 | 0.5017 | 0.7722 |
0.5177 | 14.0 | 49 | 0.4723 | 0.7975 |
0.4995 | 14.8571 | 52 | 0.7057 | 0.6835 |
0.4995 | 16.0 | 56 | 0.4669 | 0.8228 |
0.4995 | 16.8571 | 59 | 0.5737 | 0.7468 |
0.3767 | 18.0 | 63 | 0.5035 | 0.8101 |
0.3767 | 18.8571 | 66 | 0.8993 | 0.6203 |
0.3602 | 20.0 | 70 | 0.5425 | 0.7975 |
0.3602 | 20.8571 | 73 | 0.5605 | 0.7722 |
0.3602 | 22.0 | 77 | 0.4260 | 0.7975 |
0.3479 | 22.8571 | 80 | 0.4117 | 0.8228 |
0.3479 | 24.0 | 84 | 0.4017 | 0.7975 |
0.3479 | 24.8571 | 87 | 0.4401 | 0.8228 |
0.2845 | 26.0 | 91 | 0.4490 | 0.7975 |
0.2845 | 26.8571 | 94 | 0.5080 | 0.8101 |
0.2845 | 28.0 | 98 | 0.5014 | 0.7975 |
0.2316 | 28.8571 | 101 | 0.5385 | 0.7722 |
0.2316 | 30.0 | 105 | 0.5643 | 0.7595 |
0.2316 | 30.8571 | 108 | 0.4887 | 0.7848 |
0.2212 | 32.0 | 112 | 0.5253 | 0.7975 |
0.2212 | 32.8571 | 115 | 0.4633 | 0.7975 |
0.2212 | 34.0 | 119 | 0.5079 | 0.8228 |
0.2093 | 34.8571 | 122 | 0.5082 | 0.7975 |
0.2093 | 36.0 | 126 | 0.6113 | 0.7468 |
0.2093 | 36.8571 | 129 | 0.5094 | 0.7848 |
0.179 | 38.0 | 133 | 0.6253 | 0.8101 |
0.179 | 38.8571 | 136 | 0.5406 | 0.7848 |
0.173 | 40.0 | 140 | 0.6687 | 0.7722 |
0.173 | 40.8571 | 143 | 0.5691 | 0.7975 |
0.173 | 42.0 | 147 | 0.5776 | 0.7975 |
0.1881 | 42.8571 | 150 | 0.7816 | 0.7595 |
0.1881 | 44.0 | 154 | 0.4908 | 0.8354 |
0.1881 | 44.8571 | 157 | 0.5330 | 0.7848 |
0.161 | 46.0 | 161 | 0.5351 | 0.7848 |
0.161 | 46.8571 | 164 | 0.6663 | 0.7848 |
0.161 | 48.0 | 168 | 0.5382 | 0.7975 |
0.1446 | 48.8571 | 171 | 0.5877 | 0.7848 |
0.1446 | 50.0 | 175 | 0.6856 | 0.8228 |
0.1446 | 50.8571 | 178 | 0.6044 | 0.8101 |
0.1556 | 52.0 | 182 | 0.7954 | 0.7848 |
0.1556 | 52.8571 | 185 | 0.7432 | 0.7848 |
0.1556 | 54.0 | 189 | 0.7896 | 0.8101 |
0.1602 | 54.8571 | 192 | 0.8400 | 0.8101 |
0.1602 | 56.0 | 196 | 0.8243 | 0.7848 |
0.1602 | 56.8571 | 199 | 0.6864 | 0.8354 |
0.1357 | 58.0 | 203 | 0.7131 | 0.7722 |
0.1357 | 58.8571 | 206 | 0.9191 | 0.7722 |
0.1262 | 60.0 | 210 | 0.7465 | 0.7722 |
0.1262 | 60.8571 | 213 | 0.7127 | 0.7848 |
0.1262 | 62.0 | 217 | 0.6973 | 0.7975 |
0.1323 | 62.8571 | 220 | 0.7125 | 0.7848 |
0.1323 | 64.0 | 224 | 0.7235 | 0.7848 |
0.1323 | 64.8571 | 227 | 0.7200 | 0.7975 |
0.1258 | 66.0 | 231 | 0.7616 | 0.7848 |
0.1258 | 66.8571 | 234 | 0.8537 | 0.7848 |
0.1258 | 68.0 | 238 | 0.8223 | 0.7848 |
0.1316 | 68.8571 | 241 | 0.7751 | 0.8228 |
0.1316 | 70.0 | 245 | 0.7689 | 0.8228 |
0.1316 | 70.8571 | 248 | 0.7751 | 0.8101 |
0.1104 | 72.0 | 252 | 0.7770 | 0.8101 |
0.1104 | 72.8571 | 255 | 0.7916 | 0.7975 |
0.1104 | 74.0 | 259 | 0.7995 | 0.7848 |
0.1239 | 74.8571 | 262 | 0.7981 | 0.7848 |
0.1239 | 76.0 | 266 | 0.7890 | 0.8228 |
0.1239 | 76.8571 | 269 | 0.7888 | 0.8228 |
0.1057 | 78.0 | 273 | 0.7957 | 0.8228 |
0.1057 | 78.8571 | 276 | 0.7979 | 0.8228 |
0.1015 | 80.0 | 280 | 0.7959 | 0.8101 |
0.1015 | 80.8571 | 283 | 0.7935 | 0.8101 |
0.1015 | 82.0 | 287 | 0.7973 | 0.8228 |
0.101 | 82.8571 | 290 | 0.8033 | 0.7975 |
0.101 | 84.0 | 294 | 0.8072 | 0.7975 |
0.101 | 84.8571 | 297 | 0.8049 | 0.7975 |
0.1116 | 85.7143 | 300 | 0.8042 | 0.8101 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1