metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: beit-base-patch16-224-hasta-85-fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7272727272727273
beit-base-patch16-224-hasta-85-fold2
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0030
- Accuracy: 0.7273
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 1 | 1.3943 | 0.0 |
No log | 2.0 | 2 | 1.1771 | 0.3636 |
No log | 3.0 | 3 | 1.0030 | 0.7273 |
No log | 4.0 | 4 | 1.1175 | 0.7273 |
No log | 5.0 | 5 | 1.3271 | 0.7273 |
No log | 6.0 | 6 | 1.3905 | 0.7273 |
No log | 7.0 | 7 | 1.2948 | 0.7273 |
No log | 8.0 | 8 | 1.0699 | 0.7273 |
No log | 9.0 | 9 | 0.9284 | 0.7273 |
0.3023 | 10.0 | 10 | 0.9573 | 0.7273 |
0.3023 | 11.0 | 11 | 1.1350 | 0.7273 |
0.3023 | 12.0 | 12 | 1.2566 | 0.7273 |
0.3023 | 13.0 | 13 | 1.2979 | 0.7273 |
0.3023 | 14.0 | 14 | 1.1942 | 0.7273 |
0.3023 | 15.0 | 15 | 1.1980 | 0.7273 |
0.3023 | 16.0 | 16 | 1.2017 | 0.7273 |
0.3023 | 17.0 | 17 | 1.4194 | 0.7273 |
0.3023 | 18.0 | 18 | 1.5204 | 0.7273 |
0.3023 | 19.0 | 19 | 1.3899 | 0.7273 |
0.1701 | 20.0 | 20 | 1.2407 | 0.7273 |
0.1701 | 21.0 | 21 | 1.3356 | 0.7273 |
0.1701 | 22.0 | 22 | 1.5076 | 0.7273 |
0.1701 | 23.0 | 23 | 1.4260 | 0.7273 |
0.1701 | 24.0 | 24 | 1.1877 | 0.7273 |
0.1701 | 25.0 | 25 | 1.0433 | 0.7273 |
0.1701 | 26.0 | 26 | 1.0261 | 0.7273 |
0.1701 | 27.0 | 27 | 1.0869 | 0.7273 |
0.1701 | 28.0 | 28 | 1.1074 | 0.7273 |
0.1701 | 29.0 | 29 | 1.0858 | 0.7273 |
0.1058 | 30.0 | 30 | 1.0020 | 0.7273 |
0.1058 | 31.0 | 31 | 0.9881 | 0.7273 |
0.1058 | 32.0 | 32 | 1.0530 | 0.7273 |
0.1058 | 33.0 | 33 | 1.3736 | 0.7273 |
0.1058 | 34.0 | 34 | 1.4768 | 0.7273 |
0.1058 | 35.0 | 35 | 1.4372 | 0.7273 |
0.1058 | 36.0 | 36 | 1.4594 | 0.7273 |
0.1058 | 37.0 | 37 | 1.4529 | 0.7273 |
0.1058 | 38.0 | 38 | 1.6027 | 0.7273 |
0.1058 | 39.0 | 39 | 1.7376 | 0.7273 |
0.065 | 40.0 | 40 | 1.8993 | 0.7273 |
0.065 | 41.0 | 41 | 1.9927 | 0.7273 |
0.065 | 42.0 | 42 | 1.8867 | 0.7273 |
0.065 | 43.0 | 43 | 1.6363 | 0.7273 |
0.065 | 44.0 | 44 | 1.5642 | 0.7273 |
0.065 | 45.0 | 45 | 1.5278 | 0.7273 |
0.065 | 46.0 | 46 | 1.5097 | 0.7273 |
0.065 | 47.0 | 47 | 1.5586 | 0.7273 |
0.065 | 48.0 | 48 | 1.5659 | 0.7273 |
0.065 | 49.0 | 49 | 1.5743 | 0.7273 |
0.061 | 50.0 | 50 | 1.5951 | 0.7273 |
0.061 | 51.0 | 51 | 1.6097 | 0.7273 |
0.061 | 52.0 | 52 | 1.6781 | 0.7273 |
0.061 | 53.0 | 53 | 1.7168 | 0.7273 |
0.061 | 54.0 | 54 | 1.6331 | 0.7273 |
0.061 | 55.0 | 55 | 1.5711 | 0.7273 |
0.061 | 56.0 | 56 | 1.6043 | 0.7273 |
0.061 | 57.0 | 57 | 1.6590 | 0.7273 |
0.061 | 58.0 | 58 | 1.6879 | 0.7273 |
0.061 | 59.0 | 59 | 1.6452 | 0.7273 |
0.0642 | 60.0 | 60 | 1.6099 | 0.7273 |
0.0642 | 61.0 | 61 | 1.5536 | 0.7273 |
0.0642 | 62.0 | 62 | 1.5496 | 0.7273 |
0.0642 | 63.0 | 63 | 1.5528 | 0.7273 |
0.0642 | 64.0 | 64 | 1.6351 | 0.7273 |
0.0642 | 65.0 | 65 | 1.7556 | 0.7273 |
0.0642 | 66.0 | 66 | 1.8993 | 0.7273 |
0.0642 | 67.0 | 67 | 2.0309 | 0.7273 |
0.0642 | 68.0 | 68 | 2.1548 | 0.7273 |
0.0642 | 69.0 | 69 | 2.2087 | 0.7273 |
0.0411 | 70.0 | 70 | 2.2062 | 0.7273 |
0.0411 | 71.0 | 71 | 2.1605 | 0.7273 |
0.0411 | 72.0 | 72 | 2.1347 | 0.7273 |
0.0411 | 73.0 | 73 | 2.0662 | 0.7273 |
0.0411 | 74.0 | 74 | 2.0683 | 0.7273 |
0.0411 | 75.0 | 75 | 2.0466 | 0.7273 |
0.0411 | 76.0 | 76 | 1.9756 | 0.7273 |
0.0411 | 77.0 | 77 | 1.8928 | 0.7273 |
0.0411 | 78.0 | 78 | 1.8972 | 0.7273 |
0.0411 | 79.0 | 79 | 1.9408 | 0.7273 |
0.0421 | 80.0 | 80 | 1.9690 | 0.7273 |
0.0421 | 81.0 | 81 | 2.0466 | 0.7273 |
0.0421 | 82.0 | 82 | 2.1174 | 0.7273 |
0.0421 | 83.0 | 83 | 2.1825 | 0.7273 |
0.0421 | 84.0 | 84 | 2.2527 | 0.7273 |
0.0421 | 85.0 | 85 | 2.2933 | 0.7273 |
0.0421 | 86.0 | 86 | 2.3311 | 0.7273 |
0.0421 | 87.0 | 87 | 2.3468 | 0.7273 |
0.0421 | 88.0 | 88 | 2.3222 | 0.7273 |
0.0421 | 89.0 | 89 | 2.2764 | 0.7273 |
0.0304 | 90.0 | 90 | 2.2190 | 0.7273 |
0.0304 | 91.0 | 91 | 2.1855 | 0.7273 |
0.0304 | 92.0 | 92 | 2.1677 | 0.7273 |
0.0304 | 93.0 | 93 | 2.1493 | 0.7273 |
0.0304 | 94.0 | 94 | 2.1259 | 0.7273 |
0.0304 | 95.0 | 95 | 2.1151 | 0.7273 |
0.0304 | 96.0 | 96 | 2.1179 | 0.7273 |
0.0304 | 97.0 | 97 | 2.1250 | 0.7273 |
0.0304 | 98.0 | 98 | 2.1302 | 0.7273 |
0.0304 | 99.0 | 99 | 2.1330 | 0.7273 |
0.0305 | 100.0 | 100 | 2.1360 | 0.7273 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1