metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: beit-base-patch16-224-75-fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9534883720930233
beit-base-patch16-224-75-fold5
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2664
- Accuracy: 0.9535
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 2 | 0.6862 | 0.5116 |
No log | 2.0 | 4 | 0.5913 | 0.7209 |
No log | 3.0 | 6 | 0.7204 | 0.6977 |
No log | 4.0 | 8 | 0.5995 | 0.6977 |
0.6162 | 5.0 | 10 | 0.4235 | 0.8140 |
0.6162 | 6.0 | 12 | 0.3975 | 0.8140 |
0.6162 | 7.0 | 14 | 0.6029 | 0.7674 |
0.6162 | 8.0 | 16 | 0.4670 | 0.8140 |
0.6162 | 9.0 | 18 | 0.3448 | 0.8372 |
0.4312 | 10.0 | 20 | 0.4464 | 0.8372 |
0.4312 | 11.0 | 22 | 0.3396 | 0.8605 |
0.4312 | 12.0 | 24 | 0.4007 | 0.8372 |
0.4312 | 13.0 | 26 | 0.3398 | 0.8140 |
0.4312 | 14.0 | 28 | 0.4276 | 0.8605 |
0.3453 | 15.0 | 30 | 0.4336 | 0.8605 |
0.3453 | 16.0 | 32 | 0.3777 | 0.8140 |
0.3453 | 17.0 | 34 | 0.5910 | 0.8140 |
0.3453 | 18.0 | 36 | 0.6095 | 0.8140 |
0.3453 | 19.0 | 38 | 0.3570 | 0.8140 |
0.3288 | 20.0 | 40 | 0.5202 | 0.8140 |
0.3288 | 21.0 | 42 | 0.5604 | 0.8140 |
0.3288 | 22.0 | 44 | 0.2949 | 0.8372 |
0.3288 | 23.0 | 46 | 0.3442 | 0.8837 |
0.3288 | 24.0 | 48 | 0.2820 | 0.8372 |
0.2571 | 25.0 | 50 | 0.3240 | 0.8605 |
0.2571 | 26.0 | 52 | 0.2909 | 0.8837 |
0.2571 | 27.0 | 54 | 0.2429 | 0.8837 |
0.2571 | 28.0 | 56 | 0.2280 | 0.9302 |
0.2571 | 29.0 | 58 | 0.3984 | 0.8605 |
0.2012 | 30.0 | 60 | 0.2905 | 0.8605 |
0.2012 | 31.0 | 62 | 0.2509 | 0.9070 |
0.2012 | 32.0 | 64 | 0.2888 | 0.8605 |
0.2012 | 33.0 | 66 | 0.2689 | 0.8605 |
0.2012 | 34.0 | 68 | 0.2417 | 0.8837 |
0.1814 | 35.0 | 70 | 0.2418 | 0.9070 |
0.1814 | 36.0 | 72 | 0.2491 | 0.9070 |
0.1814 | 37.0 | 74 | 0.2998 | 0.9070 |
0.1814 | 38.0 | 76 | 0.2744 | 0.9302 |
0.1814 | 39.0 | 78 | 0.2664 | 0.9535 |
0.1555 | 40.0 | 80 | 0.2160 | 0.9302 |
0.1555 | 41.0 | 82 | 0.3875 | 0.9070 |
0.1555 | 42.0 | 84 | 0.4608 | 0.9070 |
0.1555 | 43.0 | 86 | 0.2978 | 0.9302 |
0.1555 | 44.0 | 88 | 0.4461 | 0.8837 |
0.1459 | 45.0 | 90 | 0.3603 | 0.9070 |
0.1459 | 46.0 | 92 | 0.2973 | 0.9302 |
0.1459 | 47.0 | 94 | 0.3385 | 0.8837 |
0.1459 | 48.0 | 96 | 0.3239 | 0.8837 |
0.1459 | 49.0 | 98 | 0.4315 | 0.8837 |
0.1372 | 50.0 | 100 | 0.3519 | 0.8837 |
0.1372 | 51.0 | 102 | 0.4148 | 0.8837 |
0.1372 | 52.0 | 104 | 0.4687 | 0.8837 |
0.1372 | 53.0 | 106 | 0.3287 | 0.8837 |
0.1372 | 54.0 | 108 | 0.3194 | 0.9070 |
0.1049 | 55.0 | 110 | 0.3703 | 0.8837 |
0.1049 | 56.0 | 112 | 0.3522 | 0.9070 |
0.1049 | 57.0 | 114 | 0.2572 | 0.9070 |
0.1049 | 58.0 | 116 | 0.2523 | 0.9070 |
0.1049 | 59.0 | 118 | 0.3136 | 0.9070 |
0.1143 | 60.0 | 120 | 0.3638 | 0.9070 |
0.1143 | 61.0 | 122 | 0.2916 | 0.9535 |
0.1143 | 62.0 | 124 | 0.2521 | 0.9302 |
0.1143 | 63.0 | 126 | 0.2735 | 0.9302 |
0.1143 | 64.0 | 128 | 0.3112 | 0.9302 |
0.0885 | 65.0 | 130 | 0.3246 | 0.9302 |
0.0885 | 66.0 | 132 | 0.3264 | 0.9070 |
0.0885 | 67.0 | 134 | 0.3351 | 0.9302 |
0.0885 | 68.0 | 136 | 0.3455 | 0.9302 |
0.0885 | 69.0 | 138 | 0.3579 | 0.9302 |
0.1064 | 70.0 | 140 | 0.3926 | 0.9302 |
0.1064 | 71.0 | 142 | 0.4370 | 0.9070 |
0.1064 | 72.0 | 144 | 0.4149 | 0.9302 |
0.1064 | 73.0 | 146 | 0.3315 | 0.9535 |
0.1064 | 74.0 | 148 | 0.2704 | 0.9302 |
0.1047 | 75.0 | 150 | 0.2600 | 0.9302 |
0.1047 | 76.0 | 152 | 0.3215 | 0.9535 |
0.1047 | 77.0 | 154 | 0.4110 | 0.9302 |
0.1047 | 78.0 | 156 | 0.4414 | 0.8837 |
0.1047 | 79.0 | 158 | 0.3589 | 0.9302 |
0.0937 | 80.0 | 160 | 0.3085 | 0.9535 |
0.0937 | 81.0 | 162 | 0.2889 | 0.9535 |
0.0937 | 82.0 | 164 | 0.2787 | 0.9535 |
0.0937 | 83.0 | 166 | 0.3251 | 0.9535 |
0.0937 | 84.0 | 168 | 0.4483 | 0.9070 |
0.0748 | 85.0 | 170 | 0.5490 | 0.8605 |
0.0748 | 86.0 | 172 | 0.5422 | 0.8605 |
0.0748 | 87.0 | 174 | 0.5282 | 0.8837 |
0.0748 | 88.0 | 176 | 0.5733 | 0.8605 |
0.0748 | 89.0 | 178 | 0.5978 | 0.8605 |
0.0834 | 90.0 | 180 | 0.5763 | 0.8605 |
0.0834 | 91.0 | 182 | 0.5270 | 0.8605 |
0.0834 | 92.0 | 184 | 0.4946 | 0.8837 |
0.0834 | 93.0 | 186 | 0.4881 | 0.9070 |
0.0834 | 94.0 | 188 | 0.5115 | 0.8605 |
0.1016 | 95.0 | 190 | 0.5445 | 0.8605 |
0.1016 | 96.0 | 192 | 0.5537 | 0.8605 |
0.1016 | 97.0 | 194 | 0.5451 | 0.8605 |
0.1016 | 98.0 | 196 | 0.5323 | 0.8605 |
0.1016 | 99.0 | 198 | 0.5190 | 0.8837 |
0.0657 | 100.0 | 200 | 0.5155 | 0.8837 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1