metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: beit-base-patch16-224-75-fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9534883720930233
beit-base-patch16-224-75-fold2
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2685
- Accuracy: 0.9535
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 2 | 0.7091 | 0.5349 |
No log | 2.0 | 4 | 0.6502 | 0.7209 |
No log | 3.0 | 6 | 0.9193 | 0.6977 |
No log | 4.0 | 8 | 0.7499 | 0.7442 |
0.6436 | 5.0 | 10 | 0.4527 | 0.8140 |
0.6436 | 6.0 | 12 | 0.4169 | 0.8372 |
0.6436 | 7.0 | 14 | 0.5773 | 0.7442 |
0.6436 | 8.0 | 16 | 0.4076 | 0.8605 |
0.6436 | 9.0 | 18 | 0.3939 | 0.8605 |
0.3863 | 10.0 | 20 | 0.4017 | 0.8605 |
0.3863 | 11.0 | 22 | 0.4918 | 0.8140 |
0.3863 | 12.0 | 24 | 0.2688 | 0.8372 |
0.3863 | 13.0 | 26 | 0.3884 | 0.8140 |
0.3863 | 14.0 | 28 | 0.3679 | 0.8140 |
0.2925 | 15.0 | 30 | 0.2802 | 0.8837 |
0.2925 | 16.0 | 32 | 0.2436 | 0.9070 |
0.2925 | 17.0 | 34 | 0.2337 | 0.9302 |
0.2925 | 18.0 | 36 | 0.3711 | 0.8140 |
0.2925 | 19.0 | 38 | 0.2372 | 0.9302 |
0.2289 | 20.0 | 40 | 0.2685 | 0.9535 |
0.2289 | 21.0 | 42 | 0.2610 | 0.9070 |
0.2289 | 22.0 | 44 | 0.3328 | 0.8372 |
0.2289 | 23.0 | 46 | 0.3479 | 0.8372 |
0.2289 | 24.0 | 48 | 0.2855 | 0.8837 |
0.219 | 25.0 | 50 | 0.2962 | 0.9070 |
0.219 | 26.0 | 52 | 0.4038 | 0.9070 |
0.219 | 27.0 | 54 | 0.3149 | 0.9070 |
0.219 | 28.0 | 56 | 0.3212 | 0.9070 |
0.219 | 29.0 | 58 | 0.4895 | 0.8605 |
0.1933 | 30.0 | 60 | 0.4335 | 0.8837 |
0.1933 | 31.0 | 62 | 0.3521 | 0.8372 |
0.1933 | 32.0 | 64 | 0.2960 | 0.8837 |
0.1933 | 33.0 | 66 | 0.4037 | 0.8372 |
0.1933 | 34.0 | 68 | 0.2913 | 0.8837 |
0.1892 | 35.0 | 70 | 0.3043 | 0.8837 |
0.1892 | 36.0 | 72 | 0.3602 | 0.9302 |
0.1892 | 37.0 | 74 | 0.3315 | 0.9302 |
0.1892 | 38.0 | 76 | 0.2674 | 0.9302 |
0.1892 | 39.0 | 78 | 0.2970 | 0.9535 |
0.15 | 40.0 | 80 | 0.2661 | 0.9535 |
0.15 | 41.0 | 82 | 0.2551 | 0.8837 |
0.15 | 42.0 | 84 | 0.2467 | 0.9302 |
0.15 | 43.0 | 86 | 0.3008 | 0.9535 |
0.15 | 44.0 | 88 | 0.3265 | 0.9302 |
0.1238 | 45.0 | 90 | 0.2668 | 0.9302 |
0.1238 | 46.0 | 92 | 0.2574 | 0.9302 |
0.1238 | 47.0 | 94 | 0.2498 | 0.9535 |
0.1238 | 48.0 | 96 | 0.3319 | 0.8837 |
0.1238 | 49.0 | 98 | 0.2358 | 0.9302 |
0.1063 | 50.0 | 100 | 0.2015 | 0.9302 |
0.1063 | 51.0 | 102 | 0.2171 | 0.9302 |
0.1063 | 52.0 | 104 | 0.3119 | 0.9302 |
0.1063 | 53.0 | 106 | 0.2674 | 0.9070 |
0.1063 | 54.0 | 108 | 0.3076 | 0.8837 |
0.1112 | 55.0 | 110 | 0.3182 | 0.8837 |
0.1112 | 56.0 | 112 | 0.3371 | 0.9070 |
0.1112 | 57.0 | 114 | 0.3540 | 0.9070 |
0.1112 | 58.0 | 116 | 0.4058 | 0.9070 |
0.1112 | 59.0 | 118 | 0.4013 | 0.9070 |
0.1128 | 60.0 | 120 | 0.3309 | 0.9302 |
0.1128 | 61.0 | 122 | 0.3272 | 0.9302 |
0.1128 | 62.0 | 124 | 0.4012 | 0.9070 |
0.1128 | 63.0 | 126 | 0.5794 | 0.8605 |
0.1128 | 64.0 | 128 | 0.3881 | 0.9070 |
0.1168 | 65.0 | 130 | 0.2990 | 0.9070 |
0.1168 | 66.0 | 132 | 0.3018 | 0.8837 |
0.1168 | 67.0 | 134 | 0.2561 | 0.9302 |
0.1168 | 68.0 | 136 | 0.2921 | 0.9302 |
0.1168 | 69.0 | 138 | 0.3258 | 0.9070 |
0.0846 | 70.0 | 140 | 0.2925 | 0.9302 |
0.0846 | 71.0 | 142 | 0.3073 | 0.9302 |
0.0846 | 72.0 | 144 | 0.3318 | 0.9302 |
0.0846 | 73.0 | 146 | 0.3427 | 0.9302 |
0.0846 | 74.0 | 148 | 0.3588 | 0.9070 |
0.0845 | 75.0 | 150 | 0.3939 | 0.9070 |
0.0845 | 76.0 | 152 | 0.3774 | 0.9070 |
0.0845 | 77.0 | 154 | 0.3746 | 0.9070 |
0.0845 | 78.0 | 156 | 0.4073 | 0.8837 |
0.0845 | 79.0 | 158 | 0.3886 | 0.9070 |
0.0885 | 80.0 | 160 | 0.3765 | 0.9070 |
0.0885 | 81.0 | 162 | 0.3977 | 0.9070 |
0.0885 | 82.0 | 164 | 0.3864 | 0.9070 |
0.0885 | 83.0 | 166 | 0.3809 | 0.9070 |
0.0885 | 84.0 | 168 | 0.4492 | 0.8605 |
0.0859 | 85.0 | 170 | 0.5479 | 0.8605 |
0.0859 | 86.0 | 172 | 0.5372 | 0.8605 |
0.0859 | 87.0 | 174 | 0.4512 | 0.8605 |
0.0859 | 88.0 | 176 | 0.3930 | 0.9070 |
0.0859 | 89.0 | 178 | 0.3842 | 0.9302 |
0.0764 | 90.0 | 180 | 0.3808 | 0.9302 |
0.0764 | 91.0 | 182 | 0.3787 | 0.9302 |
0.0764 | 92.0 | 184 | 0.3833 | 0.9070 |
0.0764 | 93.0 | 186 | 0.3912 | 0.9070 |
0.0764 | 94.0 | 188 | 0.3888 | 0.8837 |
0.0727 | 95.0 | 190 | 0.3817 | 0.8837 |
0.0727 | 96.0 | 192 | 0.3708 | 0.9070 |
0.0727 | 97.0 | 194 | 0.3640 | 0.9070 |
0.0727 | 98.0 | 196 | 0.3613 | 0.9302 |
0.0727 | 99.0 | 198 | 0.3607 | 0.9302 |
0.069 | 100.0 | 200 | 0.3605 | 0.9302 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1