BiMediX-Bi / README.md
HuggingSara's picture
Update README.md
5a368ad verified
|
raw
history blame
3 kB
---
language:
- en
- ar
metrics:
- accuracy
pipeline_tag: text-generation
tags:
- medical
license: cc-by-nc-sa-4.0
---
## Model Card for BiMediX-Bilingual
### Model Details
- **Name:** BiMediX
- **Version:** 1.0
- **Type:** Bilingual Medical Mixture of Experts Large Language Model (LLM)
- **Languages:** English, Arabic
- **Model Architecture:** [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
- **Training Data:** BiMed1.3M, a bilingual dataset with diverse medical interactions.
### Intended Use
- **Primary Use:** Medical interactions in both English and Arabic.
- **Capabilities:** MCQA, closed QA and chats.
## Getting Started
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "BiMediX/BiMediX-Bi"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
text = "Hello BiMediX! I've been experiencing increased tiredness in the past week."
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=500)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
### Training Procedure
- **Dataset:** BiMed1.3M, 632 million healthcare specialized tokens.
- **QLoRA Adaptation:** Implements a low-rank adaptation technique, incorporating learnable low-rank adapter weights into the experts and the routing network. This results in training about 4% of the original parameters.
- **Training Resources:** The model underwent training on approximately 632 million tokens from the Arabic-English corpus, including 288 million tokens exclusively for English.
### Model Performance
- **Benchmarks:** Outperforms the baseline model and Jais-30B in medical evaluations.
| **Model** | **CKG** | **CBio** | **CMed** | **MedGen** | **ProMed** | **Ana** | **MedMCQA** | **MedQA** | **PubmedQA** | **AVG** |
|-----------------------------------|------------|-----------|-----------|-------------|-------------|---------|-------------|-----------|--------------|---------|
| Jais-30B | 57.4 | 55.2 | 46.2 | 55.0 | 46.0 | 48.9 | 40.2 | 31.0 | 75.5 | 50.6 |
| Mixtral-8x7B| 59.1 | 57.6 | 52.6 | 59.5 | 53.3 | 54.4 | 43.2 | 40.6 | 74.7 | 55.0 |
| **BiMediX (Bilingual)** | **70.6** | **72.2** | **59.3** | **74.0** | **64.2** | **59.6**| **55.8** | **54.0** | **78.6** | **65.4**|
### Safety and Ethical Considerations
- **Potential issues**: hallucinations, toxicity, stereotypes.
- **Usage:** Research purposes only.
### Accessibility
- **Availability:** [BiMediX GitHub Repository](https://github.com/mbzuai-oryx/BiMediX).
- arxiv.org/abs/2402.13253
### Authors
Sara Pieri, Sahal Shaji Mullappilly, Fahad Shahbaz Khan, Rao Muhammad Anwer Salman Khan, Timothy Baldwin, Hisham Cholakkal
**Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI)**