|
--- |
|
license: cc-by-nc-sa-4.0 |
|
language: |
|
- ar |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-generation |
|
tags: |
|
- medical |
|
--- |
|
|
|
|
|
|
|
## Model Card for BiMediX-Bilingual |
|
|
|
### Model Details |
|
- **Name:** BiMediX |
|
- **Version:** 1.0 |
|
- **Type:** Bilingual Medical Mixture of Experts Large Language Model (LLM) |
|
- **Languages:** Arabic |
|
- **Model Architecture:** [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) |
|
- **Training Data:** BiMed1.3M-Arabic, an arabic dataset with diverse medical interactions. |
|
|
|
### Intended Use |
|
- **Primary Use:** Medical interactions in both English and Arabic. |
|
- **Capabilities:** MCQA, closed QA and chats. |
|
|
|
## Getting Started |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_id = "BiMediX/BiMediX-Ara" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
|
|
text = "مرحبًا بيميديكس! لقد كنت أعاني من التعب المتزايد في الأسبوع الماضي." |
|
inputs = tokenizer(text, return_tensors="pt") |
|
|
|
outputs = model.generate(**inputs, max_new_tokens=500) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
### Training Procedure |
|
- **Dataset:** BiMed1.3M-Arabic. |
|
- **QLoRA Adaptation:** Implements a low-rank adaptation technique, incorporating learnable low-rank adapter weights into the experts and the routing network. This results in training about 4% of the original parameters. |
|
- **Training Resources:** The model underwent training on the Arabic corpus. |
|
|
|
### Model Performance |
|
|
|
| **Model** | **CKG** | **CBio** | **CMed** | **MedGen** | **ProMed** | **Ana** | **MedMCQA** | **MedQA** | **PubmedQA** | **AVG** | |
|
|-----------|------------|-----------|-----------|-------------|-------------|---------|-------------|-----------|--------------|---------| |
|
| Jais-30B | 52.1 | 50.7 | 40.5 | 49.0 | 39.3 | 43.0 | 37.0 | 28.8 | 74.6 | 46.1 | |
|
| BiMediX (Arabic) | 60.0 | 54.9 | **55.5** | 58.0 | **58.1** | 49.6 | 46.0 | 40.2 | 76.6 | 55.4 | |
|
| **BiMediX (Bilingual)** | **63.8** | **57.6** | 52.6 | **64.0** | 52.9 | **50.4** | **49.1** | **47.3** | **78.4** | **56.5** | |
|
|
|
### Safety and Ethical Considerations |
|
- **Potential issues**: hallucinations, toxicity, stereotypes. |
|
- **Usage:** Research purposes only. |
|
|
|
### Accessibility |
|
- **Availability:** [BiMediX GitHub Repository](https://github.com/mbzuai-oryx/BiMediX). |
|
- arxiv.org/abs/2402.13253 |
|
|
|
### Authors |
|
Sara Pieri, Sahal Shaji Mullappilly, Fahad Shahbaz Khan, Rao Muhammad Anwer Salman Khan, Timothy Baldwin, Hisham Cholakkal |
|
**Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI)** |