File size: 48,625 Bytes
6370773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
"""
This file is very long and growing, but it was decided to not split it yet, as
it's still manageable (2020-03-17, ~1.1k LoC). See gh-31989

Instead of splitting it was decided to define sections here:
- Configuration / Settings
- Autouse fixtures
- Common arguments
- Missing values & co.
- Classes
- Indices
- Series'
- DataFrames
- Operators & Operations
- Data sets/files
- Time zones
- Dtypes
- Misc
"""
from __future__ import annotations

from collections import abc
from datetime import (
    date,
    datetime,
    time,
    timedelta,
    timezone,
)
from decimal import Decimal
import operator
import os
from typing import (
    TYPE_CHECKING,
    Callable,
)

from dateutil.tz import (
    tzlocal,
    tzutc,
)
import hypothesis
from hypothesis import strategies as st
import numpy as np
import pytest
from pytz import (
    FixedOffset,
    utc,
)

from pandas._config.config import _get_option

import pandas.util._test_decorators as td

from pandas.core.dtypes.dtypes import (
    DatetimeTZDtype,
    IntervalDtype,
)

import pandas as pd
from pandas import (
    CategoricalIndex,
    DataFrame,
    Interval,
    IntervalIndex,
    Period,
    RangeIndex,
    Series,
    Timedelta,
    Timestamp,
    date_range,
    period_range,
    timedelta_range,
)
import pandas._testing as tm
from pandas.core import ops
from pandas.core.indexes.api import (
    Index,
    MultiIndex,
)
from pandas.util.version import Version

if TYPE_CHECKING:
    from collections.abc import (
        Hashable,
        Iterator,
    )

try:
    import pyarrow as pa
except ImportError:
    has_pyarrow = False
else:
    del pa
    has_pyarrow = True

import zoneinfo

try:
    zoneinfo.ZoneInfo("UTC")
except zoneinfo.ZoneInfoNotFoundError:
    zoneinfo = None  # type: ignore[assignment]


# ----------------------------------------------------------------
# Configuration / Settings
# ----------------------------------------------------------------
# pytest


def pytest_addoption(parser) -> None:
    parser.addoption(
        "--no-strict-data-files",
        action="store_false",
        help="Don't fail if a test is skipped for missing data file.",
    )


def ignore_doctest_warning(item: pytest.Item, path: str, message: str) -> None:
    """Ignore doctest warning.

    Parameters
    ----------
    item : pytest.Item
        pytest test item.
    path : str
        Module path to Python object, e.g. "pandas.core.frame.DataFrame.append". A
        warning will be filtered when item.name ends with in given path. So it is
        sufficient to specify e.g. "DataFrame.append".
    message : str
        Message to be filtered.
    """
    if item.name.endswith(path):
        item.add_marker(pytest.mark.filterwarnings(f"ignore:{message}"))


def pytest_collection_modifyitems(items, config) -> None:
    is_doctest = config.getoption("--doctest-modules") or config.getoption(
        "--doctest-cython", default=False
    )

    # Warnings from doctests that can be ignored; place reason in comment above.
    # Each entry specifies (path, message) - see the ignore_doctest_warning function
    ignored_doctest_warnings = [
        ("is_int64_dtype", "is_int64_dtype is deprecated"),
        ("is_interval_dtype", "is_interval_dtype is deprecated"),
        ("is_period_dtype", "is_period_dtype is deprecated"),
        ("is_datetime64tz_dtype", "is_datetime64tz_dtype is deprecated"),
        ("is_categorical_dtype", "is_categorical_dtype is deprecated"),
        ("is_sparse", "is_sparse is deprecated"),
        ("DataFrameGroupBy.fillna", "DataFrameGroupBy.fillna is deprecated"),
        ("NDFrame.replace", "The 'method' keyword"),
        ("NDFrame.replace", "Series.replace without 'value'"),
        ("NDFrame.clip", "Downcasting behavior in Series and DataFrame methods"),
        ("Series.idxmin", "The behavior of Series.idxmin"),
        ("Series.idxmax", "The behavior of Series.idxmax"),
        ("SeriesGroupBy.fillna", "SeriesGroupBy.fillna is deprecated"),
        ("SeriesGroupBy.idxmin", "The behavior of Series.idxmin"),
        ("SeriesGroupBy.idxmax", "The behavior of Series.idxmax"),
        # Docstring divides by zero to show behavior difference
        ("missing.mask_zero_div_zero", "divide by zero encountered"),
        (
            "to_pydatetime",
            "The behavior of DatetimeProperties.to_pydatetime is deprecated",
        ),
        (
            "pandas.core.generic.NDFrame.bool",
            "(Series|DataFrame).bool is now deprecated and will be removed "
            "in future version of pandas",
        ),
        (
            "pandas.core.generic.NDFrame.first",
            "first is deprecated and will be removed in a future version. "
            "Please create a mask and filter using `.loc` instead",
        ),
        (
            "Resampler.fillna",
            "DatetimeIndexResampler.fillna is deprecated",
        ),
        (
            "DataFrameGroupBy.fillna",
            "DataFrameGroupBy.fillna with 'method' is deprecated",
        ),
        (
            "DataFrameGroupBy.fillna",
            "DataFrame.fillna with 'method' is deprecated",
        ),
        ("read_parquet", "Passing a BlockManager to DataFrame is deprecated"),
    ]

    if is_doctest:
        for item in items:
            for path, message in ignored_doctest_warnings:
                ignore_doctest_warning(item, path, message)


hypothesis_health_checks = [hypothesis.HealthCheck.too_slow]
if Version(hypothesis.__version__) >= Version("6.83.2"):
    hypothesis_health_checks.append(hypothesis.HealthCheck.differing_executors)

# Hypothesis
hypothesis.settings.register_profile(
    "ci",
    # Hypothesis timing checks are tuned for scalars by default, so we bump
    # them from 200ms to 500ms per test case as the global default.  If this
    # is too short for a specific test, (a) try to make it faster, and (b)
    # if it really is slow add `@settings(deadline=...)` with a working value,
    # or `deadline=None` to entirely disable timeouts for that test.
    # 2022-02-09: Changed deadline from 500 -> None. Deadline leads to
    # non-actionable, flaky CI failures (# GH 24641, 44969, 45118, 44969)
    deadline=None,
    suppress_health_check=tuple(hypothesis_health_checks),
)
hypothesis.settings.load_profile("ci")

# Registering these strategies makes them globally available via st.from_type,
# which is use for offsets in tests/tseries/offsets/test_offsets_properties.py
for name in "MonthBegin MonthEnd BMonthBegin BMonthEnd".split():
    cls = getattr(pd.tseries.offsets, name)
    st.register_type_strategy(
        cls, st.builds(cls, n=st.integers(-99, 99), normalize=st.booleans())
    )

for name in "YearBegin YearEnd BYearBegin BYearEnd".split():
    cls = getattr(pd.tseries.offsets, name)
    st.register_type_strategy(
        cls,
        st.builds(
            cls,
            n=st.integers(-5, 5),
            normalize=st.booleans(),
            month=st.integers(min_value=1, max_value=12),
        ),
    )

for name in "QuarterBegin QuarterEnd BQuarterBegin BQuarterEnd".split():
    cls = getattr(pd.tseries.offsets, name)
    st.register_type_strategy(
        cls,
        st.builds(
            cls,
            n=st.integers(-24, 24),
            normalize=st.booleans(),
            startingMonth=st.integers(min_value=1, max_value=12),
        ),
    )


# ----------------------------------------------------------------
# Autouse fixtures
# ----------------------------------------------------------------


# https://github.com/pytest-dev/pytest/issues/11873
# Would like to avoid autouse=True, but cannot as of pytest 8.0.0
@pytest.fixture(autouse=True)
def add_doctest_imports(doctest_namespace) -> None:
    """
    Make `np` and `pd` names available for doctests.
    """
    doctest_namespace["np"] = np
    doctest_namespace["pd"] = pd


@pytest.fixture(autouse=True)
def configure_tests() -> None:
    """
    Configure settings for all tests and test modules.
    """
    pd.set_option("chained_assignment", "raise")


# ----------------------------------------------------------------
# Common arguments
# ----------------------------------------------------------------
@pytest.fixture(params=[0, 1, "index", "columns"], ids=lambda x: f"axis={repr(x)}")
def axis(request):
    """
    Fixture for returning the axis numbers of a DataFrame.
    """
    return request.param


axis_frame = axis


@pytest.fixture(params=[1, "columns"], ids=lambda x: f"axis={repr(x)}")
def axis_1(request):
    """
    Fixture for returning aliases of axis 1 of a DataFrame.
    """
    return request.param


@pytest.fixture(params=[True, False, None])
def observed(request):
    """
    Pass in the observed keyword to groupby for [True, False]
    This indicates whether categoricals should return values for
    values which are not in the grouper [False / None], or only values which
    appear in the grouper [True]. [None] is supported for future compatibility
    if we decide to change the default (and would need to warn if this
    parameter is not passed).
    """
    return request.param


@pytest.fixture(params=[True, False, None])
def ordered(request):
    """
    Boolean 'ordered' parameter for Categorical.
    """
    return request.param


@pytest.fixture(params=[True, False])
def skipna(request):
    """
    Boolean 'skipna' parameter.
    """
    return request.param


@pytest.fixture(params=["first", "last", False])
def keep(request):
    """
    Valid values for the 'keep' parameter used in
    .duplicated or .drop_duplicates
    """
    return request.param


@pytest.fixture(params=["both", "neither", "left", "right"])
def inclusive_endpoints_fixture(request):
    """
    Fixture for trying all interval 'inclusive' parameters.
    """
    return request.param


@pytest.fixture(params=["left", "right", "both", "neither"])
def closed(request):
    """
    Fixture for trying all interval closed parameters.
    """
    return request.param


@pytest.fixture(params=["left", "right", "both", "neither"])
def other_closed(request):
    """
    Secondary closed fixture to allow parametrizing over all pairs of closed.
    """
    return request.param


@pytest.fixture(
    params=[
        None,
        "gzip",
        "bz2",
        "zip",
        "xz",
        "tar",
        pytest.param("zstd", marks=td.skip_if_no("zstandard")),
    ]
)
def compression(request):
    """
    Fixture for trying common compression types in compression tests.
    """
    return request.param


@pytest.fixture(
    params=[
        "gzip",
        "bz2",
        "zip",
        "xz",
        "tar",
        pytest.param("zstd", marks=td.skip_if_no("zstandard")),
    ]
)
def compression_only(request):
    """
    Fixture for trying common compression types in compression tests excluding
    uncompressed case.
    """
    return request.param


@pytest.fixture(params=[True, False])
def writable(request):
    """
    Fixture that an array is writable.
    """
    return request.param


@pytest.fixture(params=["inner", "outer", "left", "right"])
def join_type(request):
    """
    Fixture for trying all types of join operations.
    """
    return request.param


@pytest.fixture(params=["nlargest", "nsmallest"])
def nselect_method(request):
    """
    Fixture for trying all nselect methods.
    """
    return request.param


# ----------------------------------------------------------------
# Missing values & co.
# ----------------------------------------------------------------
@pytest.fixture(params=tm.NULL_OBJECTS, ids=lambda x: type(x).__name__)
def nulls_fixture(request):
    """
    Fixture for each null type in pandas.
    """
    return request.param


nulls_fixture2 = nulls_fixture  # Generate cartesian product of nulls_fixture


@pytest.fixture(params=[None, np.nan, pd.NaT])
def unique_nulls_fixture(request):
    """
    Fixture for each null type in pandas, each null type exactly once.
    """
    return request.param


# Generate cartesian product of unique_nulls_fixture:
unique_nulls_fixture2 = unique_nulls_fixture


@pytest.fixture(params=tm.NP_NAT_OBJECTS, ids=lambda x: type(x).__name__)
def np_nat_fixture(request):
    """
    Fixture for each NaT type in numpy.
    """
    return request.param


# Generate cartesian product of np_nat_fixture:
np_nat_fixture2 = np_nat_fixture


# ----------------------------------------------------------------
# Classes
# ----------------------------------------------------------------


@pytest.fixture(params=[DataFrame, Series])
def frame_or_series(request):
    """
    Fixture to parametrize over DataFrame and Series.
    """
    return request.param


@pytest.fixture(params=[Index, Series], ids=["index", "series"])
def index_or_series(request):
    """
    Fixture to parametrize over Index and Series, made necessary by a mypy
    bug, giving an error:

    List item 0 has incompatible type "Type[Series]"; expected "Type[PandasObject]"

    See GH#29725
    """
    return request.param


# Generate cartesian product of index_or_series fixture:
index_or_series2 = index_or_series


@pytest.fixture(params=[Index, Series, pd.array], ids=["index", "series", "array"])
def index_or_series_or_array(request):
    """
    Fixture to parametrize over Index, Series, and ExtensionArray
    """
    return request.param


@pytest.fixture(params=[Index, Series, DataFrame, pd.array], ids=lambda x: x.__name__)
def box_with_array(request):
    """
    Fixture to test behavior for Index, Series, DataFrame, and pandas Array
    classes
    """
    return request.param


box_with_array2 = box_with_array


@pytest.fixture
def dict_subclass() -> type[dict]:
    """
    Fixture for a dictionary subclass.
    """

    class TestSubDict(dict):
        def __init__(self, *args, **kwargs) -> None:
            dict.__init__(self, *args, **kwargs)

    return TestSubDict


@pytest.fixture
def non_dict_mapping_subclass() -> type[abc.Mapping]:
    """
    Fixture for a non-mapping dictionary subclass.
    """

    class TestNonDictMapping(abc.Mapping):
        def __init__(self, underlying_dict) -> None:
            self._data = underlying_dict

        def __getitem__(self, key):
            return self._data.__getitem__(key)

        def __iter__(self) -> Iterator:
            return self._data.__iter__()

        def __len__(self) -> int:
            return self._data.__len__()

    return TestNonDictMapping


# ----------------------------------------------------------------
# Indices
# ----------------------------------------------------------------
@pytest.fixture
def multiindex_year_month_day_dataframe_random_data():
    """
    DataFrame with 3 level MultiIndex (year, month, day) covering
    first 100 business days from 2000-01-01 with random data
    """
    tdf = DataFrame(
        np.random.default_rng(2).standard_normal((100, 4)),
        columns=Index(list("ABCD"), dtype=object),
        index=date_range("2000-01-01", periods=100, freq="B"),
    )
    ymd = tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum()
    # use int64 Index, to make sure things work
    ymd.index = ymd.index.set_levels([lev.astype("i8") for lev in ymd.index.levels])
    ymd.index.set_names(["year", "month", "day"], inplace=True)
    return ymd


@pytest.fixture
def lexsorted_two_level_string_multiindex() -> MultiIndex:
    """
    2-level MultiIndex, lexsorted, with string names.
    """
    return MultiIndex(
        levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]],
        codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
        names=["first", "second"],
    )


@pytest.fixture
def multiindex_dataframe_random_data(
    lexsorted_two_level_string_multiindex,
) -> DataFrame:
    """DataFrame with 2 level MultiIndex with random data"""
    index = lexsorted_two_level_string_multiindex
    return DataFrame(
        np.random.default_rng(2).standard_normal((10, 3)),
        index=index,
        columns=Index(["A", "B", "C"], name="exp"),
    )


def _create_multiindex():
    """
    MultiIndex used to test the general functionality of this object
    """

    # See Also: tests.multi.conftest.idx
    major_axis = Index(["foo", "bar", "baz", "qux"])
    minor_axis = Index(["one", "two"])

    major_codes = np.array([0, 0, 1, 2, 3, 3])
    minor_codes = np.array([0, 1, 0, 1, 0, 1])
    index_names = ["first", "second"]
    return MultiIndex(
        levels=[major_axis, minor_axis],
        codes=[major_codes, minor_codes],
        names=index_names,
        verify_integrity=False,
    )


def _create_mi_with_dt64tz_level():
    """
    MultiIndex with a level that is a tzaware DatetimeIndex.
    """
    # GH#8367 round trip with pickle
    return MultiIndex.from_product(
        [[1, 2], ["a", "b"], date_range("20130101", periods=3, tz="US/Eastern")],
        names=["one", "two", "three"],
    )


indices_dict = {
    "string": Index([f"pandas_{i}" for i in range(100)]),
    "datetime": date_range("2020-01-01", periods=100),
    "datetime-tz": date_range("2020-01-01", periods=100, tz="US/Pacific"),
    "period": period_range("2020-01-01", periods=100, freq="D"),
    "timedelta": timedelta_range(start="1 day", periods=100, freq="D"),
    "range": RangeIndex(100),
    "int8": Index(np.arange(100), dtype="int8"),
    "int16": Index(np.arange(100), dtype="int16"),
    "int32": Index(np.arange(100), dtype="int32"),
    "int64": Index(np.arange(100), dtype="int64"),
    "uint8": Index(np.arange(100), dtype="uint8"),
    "uint16": Index(np.arange(100), dtype="uint16"),
    "uint32": Index(np.arange(100), dtype="uint32"),
    "uint64": Index(np.arange(100), dtype="uint64"),
    "float32": Index(np.arange(100), dtype="float32"),
    "float64": Index(np.arange(100), dtype="float64"),
    "bool-object": Index([True, False] * 5, dtype=object),
    "bool-dtype": Index([True, False] * 5, dtype=bool),
    "complex64": Index(
        np.arange(100, dtype="complex64") + 1.0j * np.arange(100, dtype="complex64")
    ),
    "complex128": Index(
        np.arange(100, dtype="complex128") + 1.0j * np.arange(100, dtype="complex128")
    ),
    "categorical": CategoricalIndex(list("abcd") * 25),
    "interval": IntervalIndex.from_breaks(np.linspace(0, 100, num=101)),
    "empty": Index([]),
    "tuples": MultiIndex.from_tuples(zip(["foo", "bar", "baz"], [1, 2, 3])),
    "mi-with-dt64tz-level": _create_mi_with_dt64tz_level(),
    "multi": _create_multiindex(),
    "repeats": Index([0, 0, 1, 1, 2, 2]),
    "nullable_int": Index(np.arange(100), dtype="Int64"),
    "nullable_uint": Index(np.arange(100), dtype="UInt16"),
    "nullable_float": Index(np.arange(100), dtype="Float32"),
    "nullable_bool": Index(np.arange(100).astype(bool), dtype="boolean"),
    "string-python": Index(
        pd.array([f"pandas_{i}" for i in range(100)], dtype="string[python]")
    ),
}
if has_pyarrow:
    idx = Index(pd.array([f"pandas_{i}" for i in range(100)], dtype="string[pyarrow]"))
    indices_dict["string-pyarrow"] = idx


@pytest.fixture(params=indices_dict.keys())
def index(request):
    """
    Fixture for many "simple" kinds of indices.

    These indices are unlikely to cover corner cases, e.g.
        - no names
        - no NaTs/NaNs
        - no values near implementation bounds
        - ...
    """
    # copy to avoid mutation, e.g. setting .name
    return indices_dict[request.param].copy()


# Needed to generate cartesian product of indices
index_fixture2 = index


@pytest.fixture(
    params=[
        key for key, value in indices_dict.items() if not isinstance(value, MultiIndex)
    ]
)
def index_flat(request):
    """
    index fixture, but excluding MultiIndex cases.
    """
    key = request.param
    return indices_dict[key].copy()


# Alias so we can test with cartesian product of index_flat
index_flat2 = index_flat


@pytest.fixture(
    params=[
        key
        for key, value in indices_dict.items()
        if not (
            key.startswith(("int", "uint", "float"))
            or key in ["range", "empty", "repeats", "bool-dtype"]
        )
        and not isinstance(value, MultiIndex)
    ]
)
def index_with_missing(request):
    """
    Fixture for indices with missing values.

    Integer-dtype and empty cases are excluded because they cannot hold missing
    values.

    MultiIndex is excluded because isna() is not defined for MultiIndex.
    """

    # GH 35538. Use deep copy to avoid illusive bug on np-dev
    # GHA pipeline that writes into indices_dict despite copy
    ind = indices_dict[request.param].copy(deep=True)
    vals = ind.values.copy()
    if request.param in ["tuples", "mi-with-dt64tz-level", "multi"]:
        # For setting missing values in the top level of MultiIndex
        vals = ind.tolist()
        vals[0] = (None,) + vals[0][1:]
        vals[-1] = (None,) + vals[-1][1:]
        return MultiIndex.from_tuples(vals)
    else:
        vals[0] = None
        vals[-1] = None
        return type(ind)(vals)


# ----------------------------------------------------------------
# Series'
# ----------------------------------------------------------------
@pytest.fixture
def string_series() -> Series:
    """
    Fixture for Series of floats with Index of unique strings
    """
    return Series(
        np.arange(30, dtype=np.float64) * 1.1,
        index=Index([f"i_{i}" for i in range(30)], dtype=object),
        name="series",
    )


@pytest.fixture
def object_series() -> Series:
    """
    Fixture for Series of dtype object with Index of unique strings
    """
    data = [f"foo_{i}" for i in range(30)]
    index = Index([f"bar_{i}" for i in range(30)], dtype=object)
    return Series(data, index=index, name="objects", dtype=object)


@pytest.fixture
def datetime_series() -> Series:
    """
    Fixture for Series of floats with DatetimeIndex
    """
    return Series(
        np.random.default_rng(2).standard_normal(30),
        index=date_range("2000-01-01", periods=30, freq="B"),
        name="ts",
    )


def _create_series(index):
    """Helper for the _series dict"""
    size = len(index)
    data = np.random.default_rng(2).standard_normal(size)
    return Series(data, index=index, name="a", copy=False)


_series = {
    f"series-with-{index_id}-index": _create_series(index)
    for index_id, index in indices_dict.items()
}


@pytest.fixture
def series_with_simple_index(index) -> Series:
    """
    Fixture for tests on series with changing types of indices.
    """
    return _create_series(index)


_narrow_series = {
    f"{dtype.__name__}-series": Series(
        range(30), index=[f"i-{i}" for i in range(30)], name="a", dtype=dtype
    )
    for dtype in tm.NARROW_NP_DTYPES
}


_index_or_series_objs = {**indices_dict, **_series, **_narrow_series}


@pytest.fixture(params=_index_or_series_objs.keys())
def index_or_series_obj(request):
    """
    Fixture for tests on indexes, series and series with a narrow dtype
    copy to avoid mutation, e.g. setting .name
    """
    return _index_or_series_objs[request.param].copy(deep=True)


_typ_objects_series = {
    f"{dtype.__name__}-series": Series(dtype) for dtype in tm.PYTHON_DATA_TYPES
}


_index_or_series_memory_objs = {
    **indices_dict,
    **_series,
    **_narrow_series,
    **_typ_objects_series,
}


@pytest.fixture(params=_index_or_series_memory_objs.keys())
def index_or_series_memory_obj(request):
    """
    Fixture for tests on indexes, series, series with a narrow dtype and
    series with empty objects type
    copy to avoid mutation, e.g. setting .name
    """
    return _index_or_series_memory_objs[request.param].copy(deep=True)


# ----------------------------------------------------------------
# DataFrames
# ----------------------------------------------------------------
@pytest.fixture
def int_frame() -> DataFrame:
    """
    Fixture for DataFrame of ints with index of unique strings

    Columns are ['A', 'B', 'C', 'D']
    """
    return DataFrame(
        np.ones((30, 4), dtype=np.int64),
        index=Index([f"foo_{i}" for i in range(30)], dtype=object),
        columns=Index(list("ABCD"), dtype=object),
    )


@pytest.fixture
def float_frame() -> DataFrame:
    """
    Fixture for DataFrame of floats with index of unique strings

    Columns are ['A', 'B', 'C', 'D'].
    """
    return DataFrame(
        np.random.default_rng(2).standard_normal((30, 4)),
        index=Index([f"foo_{i}" for i in range(30)]),
        columns=Index(list("ABCD")),
    )


@pytest.fixture
def rand_series_with_duplicate_datetimeindex() -> Series:
    """
    Fixture for Series with a DatetimeIndex that has duplicates.
    """
    dates = [
        datetime(2000, 1, 2),
        datetime(2000, 1, 2),
        datetime(2000, 1, 2),
        datetime(2000, 1, 3),
        datetime(2000, 1, 3),
        datetime(2000, 1, 3),
        datetime(2000, 1, 4),
        datetime(2000, 1, 4),
        datetime(2000, 1, 4),
        datetime(2000, 1, 5),
    ]

    return Series(np.random.default_rng(2).standard_normal(len(dates)), index=dates)


# ----------------------------------------------------------------
# Scalars
# ----------------------------------------------------------------
@pytest.fixture(
    params=[
        (Interval(left=0, right=5), IntervalDtype("int64", "right")),
        (Interval(left=0.1, right=0.5), IntervalDtype("float64", "right")),
        (Period("2012-01", freq="M"), "period[M]"),
        (Period("2012-02-01", freq="D"), "period[D]"),
        (
            Timestamp("2011-01-01", tz="US/Eastern"),
            DatetimeTZDtype(unit="s", tz="US/Eastern"),
        ),
        (Timedelta(seconds=500), "timedelta64[ns]"),
    ]
)
def ea_scalar_and_dtype(request):
    return request.param


# ----------------------------------------------------------------
# Operators & Operations
# ----------------------------------------------------------------


@pytest.fixture(params=tm.arithmetic_dunder_methods)
def all_arithmetic_operators(request):
    """
    Fixture for dunder names for common arithmetic operations.
    """
    return request.param


@pytest.fixture(
    params=[
        operator.add,
        ops.radd,
        operator.sub,
        ops.rsub,
        operator.mul,
        ops.rmul,
        operator.truediv,
        ops.rtruediv,
        operator.floordiv,
        ops.rfloordiv,
        operator.mod,
        ops.rmod,
        operator.pow,
        ops.rpow,
        operator.eq,
        operator.ne,
        operator.lt,
        operator.le,
        operator.gt,
        operator.ge,
        operator.and_,
        ops.rand_,
        operator.xor,
        ops.rxor,
        operator.or_,
        ops.ror_,
    ]
)
def all_binary_operators(request):
    """
    Fixture for operator and roperator arithmetic, comparison, and logical ops.
    """
    return request.param


@pytest.fixture(
    params=[
        operator.add,
        ops.radd,
        operator.sub,
        ops.rsub,
        operator.mul,
        ops.rmul,
        operator.truediv,
        ops.rtruediv,
        operator.floordiv,
        ops.rfloordiv,
        operator.mod,
        ops.rmod,
        operator.pow,
        ops.rpow,
    ]
)
def all_arithmetic_functions(request):
    """
    Fixture for operator and roperator arithmetic functions.

    Notes
    -----
    This includes divmod and rdivmod, whereas all_arithmetic_operators
    does not.
    """
    return request.param


_all_numeric_reductions = [
    "count",
    "sum",
    "max",
    "min",
    "mean",
    "prod",
    "std",
    "var",
    "median",
    "kurt",
    "skew",
    "sem",
]


@pytest.fixture(params=_all_numeric_reductions)
def all_numeric_reductions(request):
    """
    Fixture for numeric reduction names.
    """
    return request.param


_all_boolean_reductions = ["all", "any"]


@pytest.fixture(params=_all_boolean_reductions)
def all_boolean_reductions(request):
    """
    Fixture for boolean reduction names.
    """
    return request.param


_all_reductions = _all_numeric_reductions + _all_boolean_reductions


@pytest.fixture(params=_all_reductions)
def all_reductions(request):
    """
    Fixture for all (boolean + numeric) reduction names.
    """
    return request.param


@pytest.fixture(
    params=[
        operator.eq,
        operator.ne,
        operator.gt,
        operator.ge,
        operator.lt,
        operator.le,
    ]
)
def comparison_op(request):
    """
    Fixture for operator module comparison functions.
    """
    return request.param


@pytest.fixture(params=["__le__", "__lt__", "__ge__", "__gt__"])
def compare_operators_no_eq_ne(request):
    """
    Fixture for dunder names for compare operations except == and !=

    * >=
    * >
    * <
    * <=
    """
    return request.param


@pytest.fixture(
    params=["__and__", "__rand__", "__or__", "__ror__", "__xor__", "__rxor__"]
)
def all_logical_operators(request):
    """
    Fixture for dunder names for common logical operations

    * |
    * &
    * ^
    """
    return request.param


_all_numeric_accumulations = ["cumsum", "cumprod", "cummin", "cummax"]


@pytest.fixture(params=_all_numeric_accumulations)
def all_numeric_accumulations(request):
    """
    Fixture for numeric accumulation names
    """
    return request.param


# ----------------------------------------------------------------
# Data sets/files
# ----------------------------------------------------------------
@pytest.fixture
def strict_data_files(pytestconfig):
    """
    Returns the configuration for the test setting `--no-strict-data-files`.
    """
    return pytestconfig.getoption("--no-strict-data-files")


@pytest.fixture
def datapath(strict_data_files: str) -> Callable[..., str]:
    """
    Get the path to a data file.

    Parameters
    ----------
    path : str
        Path to the file, relative to ``pandas/tests/``

    Returns
    -------
    path including ``pandas/tests``.

    Raises
    ------
    ValueError
        If the path doesn't exist and the --no-strict-data-files option is not set.
    """
    BASE_PATH = os.path.join(os.path.dirname(__file__), "tests")

    def deco(*args):
        path = os.path.join(BASE_PATH, *args)
        if not os.path.exists(path):
            if strict_data_files:
                raise ValueError(
                    f"Could not find file {path} and --no-strict-data-files is not set."
                )
            pytest.skip(f"Could not find {path}.")
        return path

    return deco


# ----------------------------------------------------------------
# Time zones
# ----------------------------------------------------------------
TIMEZONES = [
    None,
    "UTC",
    "US/Eastern",
    "Asia/Tokyo",
    "dateutil/US/Pacific",
    "dateutil/Asia/Singapore",
    "+01:15",
    "-02:15",
    "UTC+01:15",
    "UTC-02:15",
    tzutc(),
    tzlocal(),
    FixedOffset(300),
    FixedOffset(0),
    FixedOffset(-300),
    timezone.utc,
    timezone(timedelta(hours=1)),
    timezone(timedelta(hours=-1), name="foo"),
]
if zoneinfo is not None:
    TIMEZONES.extend(
        [
            zoneinfo.ZoneInfo("US/Pacific"),  # type: ignore[list-item]
            zoneinfo.ZoneInfo("UTC"),  # type: ignore[list-item]
        ]
    )
TIMEZONE_IDS = [repr(i) for i in TIMEZONES]


@td.parametrize_fixture_doc(str(TIMEZONE_IDS))
@pytest.fixture(params=TIMEZONES, ids=TIMEZONE_IDS)
def tz_naive_fixture(request):
    """
    Fixture for trying timezones including default (None): {0}
    """
    return request.param


@td.parametrize_fixture_doc(str(TIMEZONE_IDS[1:]))
@pytest.fixture(params=TIMEZONES[1:], ids=TIMEZONE_IDS[1:])
def tz_aware_fixture(request):
    """
    Fixture for trying explicit timezones: {0}
    """
    return request.param


# Generate cartesian product of tz_aware_fixture:
tz_aware_fixture2 = tz_aware_fixture


_UTCS = ["utc", "dateutil/UTC", utc, tzutc(), timezone.utc]
if zoneinfo is not None:
    _UTCS.append(zoneinfo.ZoneInfo("UTC"))


@pytest.fixture(params=_UTCS)
def utc_fixture(request):
    """
    Fixture to provide variants of UTC timezone strings and tzinfo objects.
    """
    return request.param


utc_fixture2 = utc_fixture


@pytest.fixture(params=["s", "ms", "us", "ns"])
def unit(request):
    """
    datetime64 units we support.
    """
    return request.param


unit2 = unit


# ----------------------------------------------------------------
# Dtypes
# ----------------------------------------------------------------
@pytest.fixture(params=tm.STRING_DTYPES)
def string_dtype(request):
    """
    Parametrized fixture for string dtypes.

    * str
    * 'str'
    * 'U'
    """
    return request.param


@pytest.fixture(
    params=[
        "string[python]",
        pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")),
    ]
)
def nullable_string_dtype(request):
    """
    Parametrized fixture for string dtypes.

    * 'string[python]'
    * 'string[pyarrow]'
    """
    return request.param


@pytest.fixture(
    params=[
        "python",
        pytest.param("pyarrow", marks=td.skip_if_no("pyarrow")),
        pytest.param("pyarrow_numpy", marks=td.skip_if_no("pyarrow")),
    ]
)
def string_storage(request):
    """
    Parametrized fixture for pd.options.mode.string_storage.

    * 'python'
    * 'pyarrow'
    * 'pyarrow_numpy'
    """
    return request.param


@pytest.fixture(
    params=[
        "numpy_nullable",
        pytest.param("pyarrow", marks=td.skip_if_no("pyarrow")),
    ]
)
def dtype_backend(request):
    """
    Parametrized fixture for pd.options.mode.string_storage.

    * 'python'
    * 'pyarrow'
    """
    return request.param


# Alias so we can test with cartesian product of string_storage
string_storage2 = string_storage


@pytest.fixture(params=tm.BYTES_DTYPES)
def bytes_dtype(request):
    """
    Parametrized fixture for bytes dtypes.

    * bytes
    * 'bytes'
    """
    return request.param


@pytest.fixture(params=tm.OBJECT_DTYPES)
def object_dtype(request):
    """
    Parametrized fixture for object dtypes.

    * object
    * 'object'
    """
    return request.param


@pytest.fixture(
    params=[
        "object",
        "string[python]",
        pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")),
        pytest.param("string[pyarrow_numpy]", marks=td.skip_if_no("pyarrow")),
    ]
)
def any_string_dtype(request):
    """
    Parametrized fixture for string dtypes.
    * 'object'
    * 'string[python]'
    * 'string[pyarrow]'
    """
    return request.param


@pytest.fixture(params=tm.DATETIME64_DTYPES)
def datetime64_dtype(request):
    """
    Parametrized fixture for datetime64 dtypes.

    * 'datetime64[ns]'
    * 'M8[ns]'
    """
    return request.param


@pytest.fixture(params=tm.TIMEDELTA64_DTYPES)
def timedelta64_dtype(request):
    """
    Parametrized fixture for timedelta64 dtypes.

    * 'timedelta64[ns]'
    * 'm8[ns]'
    """
    return request.param


@pytest.fixture
def fixed_now_ts() -> Timestamp:
    """
    Fixture emits fixed Timestamp.now()
    """
    return Timestamp(  # pyright: ignore[reportGeneralTypeIssues]
        year=2021, month=1, day=1, hour=12, minute=4, second=13, microsecond=22
    )


@pytest.fixture(params=tm.FLOAT_NUMPY_DTYPES)
def float_numpy_dtype(request):
    """
    Parameterized fixture for float dtypes.

    * float
    * 'float32'
    * 'float64'
    """
    return request.param


@pytest.fixture(params=tm.FLOAT_EA_DTYPES)
def float_ea_dtype(request):
    """
    Parameterized fixture for float dtypes.

    * 'Float32'
    * 'Float64'
    """
    return request.param


@pytest.fixture(params=tm.ALL_FLOAT_DTYPES)
def any_float_dtype(request):
    """
    Parameterized fixture for float dtypes.

    * float
    * 'float32'
    * 'float64'
    * 'Float32'
    * 'Float64'
    """
    return request.param


@pytest.fixture(params=tm.COMPLEX_DTYPES)
def complex_dtype(request):
    """
    Parameterized fixture for complex dtypes.

    * complex
    * 'complex64'
    * 'complex128'
    """
    return request.param


@pytest.fixture(params=tm.COMPLEX_FLOAT_DTYPES)
def complex_or_float_dtype(request):
    """
    Parameterized fixture for complex and numpy float dtypes.

    * complex
    * 'complex64'
    * 'complex128'
    * float
    * 'float32'
    * 'float64'
    """
    return request.param


@pytest.fixture(params=tm.SIGNED_INT_NUMPY_DTYPES)
def any_signed_int_numpy_dtype(request):
    """
    Parameterized fixture for signed integer dtypes.

    * int
    * 'int8'
    * 'int16'
    * 'int32'
    * 'int64'
    """
    return request.param


@pytest.fixture(params=tm.UNSIGNED_INT_NUMPY_DTYPES)
def any_unsigned_int_numpy_dtype(request):
    """
    Parameterized fixture for unsigned integer dtypes.

    * 'uint8'
    * 'uint16'
    * 'uint32'
    * 'uint64'
    """
    return request.param


@pytest.fixture(params=tm.ALL_INT_NUMPY_DTYPES)
def any_int_numpy_dtype(request):
    """
    Parameterized fixture for any integer dtype.

    * int
    * 'int8'
    * 'uint8'
    * 'int16'
    * 'uint16'
    * 'int32'
    * 'uint32'
    * 'int64'
    * 'uint64'
    """
    return request.param


@pytest.fixture(params=tm.ALL_INT_EA_DTYPES)
def any_int_ea_dtype(request):
    """
    Parameterized fixture for any nullable integer dtype.

    * 'UInt8'
    * 'Int8'
    * 'UInt16'
    * 'Int16'
    * 'UInt32'
    * 'Int32'
    * 'UInt64'
    * 'Int64'
    """
    return request.param


@pytest.fixture(params=tm.ALL_INT_DTYPES)
def any_int_dtype(request):
    """
    Parameterized fixture for any nullable integer dtype.

    * int
    * 'int8'
    * 'uint8'
    * 'int16'
    * 'uint16'
    * 'int32'
    * 'uint32'
    * 'int64'
    * 'uint64'
    * 'UInt8'
    * 'Int8'
    * 'UInt16'
    * 'Int16'
    * 'UInt32'
    * 'Int32'
    * 'UInt64'
    * 'Int64'
    """
    return request.param


@pytest.fixture(params=tm.ALL_INT_EA_DTYPES + tm.FLOAT_EA_DTYPES)
def any_numeric_ea_dtype(request):
    """
    Parameterized fixture for any nullable integer dtype and
    any float ea dtypes.

    * 'UInt8'
    * 'Int8'
    * 'UInt16'
    * 'Int16'
    * 'UInt32'
    * 'Int32'
    * 'UInt64'
    * 'Int64'
    * 'Float32'
    * 'Float64'
    """
    return request.param


#  Unsupported operand types for + ("List[Union[str, ExtensionDtype, dtype[Any],
#  Type[object]]]" and "List[str]")
@pytest.fixture(
    params=tm.ALL_INT_EA_DTYPES
    + tm.FLOAT_EA_DTYPES
    + tm.ALL_INT_PYARROW_DTYPES_STR_REPR
    + tm.FLOAT_PYARROW_DTYPES_STR_REPR  # type: ignore[operator]
)
def any_numeric_ea_and_arrow_dtype(request):
    """
    Parameterized fixture for any nullable integer dtype and
    any float ea dtypes.

    * 'UInt8'
    * 'Int8'
    * 'UInt16'
    * 'Int16'
    * 'UInt32'
    * 'Int32'
    * 'UInt64'
    * 'Int64'
    * 'Float32'
    * 'Float64'
    * 'uint8[pyarrow]'
    * 'int8[pyarrow]'
    * 'uint16[pyarrow]'
    * 'int16[pyarrow]'
    * 'uint32[pyarrow]'
    * 'int32[pyarrow]'
    * 'uint64[pyarrow]'
    * 'int64[pyarrow]'
    * 'float32[pyarrow]'
    * 'float64[pyarrow]'
    """
    return request.param


@pytest.fixture(params=tm.SIGNED_INT_EA_DTYPES)
def any_signed_int_ea_dtype(request):
    """
    Parameterized fixture for any signed nullable integer dtype.

    * 'Int8'
    * 'Int16'
    * 'Int32'
    * 'Int64'
    """
    return request.param


@pytest.fixture(params=tm.ALL_REAL_NUMPY_DTYPES)
def any_real_numpy_dtype(request):
    """
    Parameterized fixture for any (purely) real numeric dtype.

    * int
    * 'int8'
    * 'uint8'
    * 'int16'
    * 'uint16'
    * 'int32'
    * 'uint32'
    * 'int64'
    * 'uint64'
    * float
    * 'float32'
    * 'float64'
    """
    return request.param


@pytest.fixture(params=tm.ALL_REAL_DTYPES)
def any_real_numeric_dtype(request):
    """
    Parameterized fixture for any (purely) real numeric dtype.

    * int
    * 'int8'
    * 'uint8'
    * 'int16'
    * 'uint16'
    * 'int32'
    * 'uint32'
    * 'int64'
    * 'uint64'
    * float
    * 'float32'
    * 'float64'

    and associated ea dtypes.
    """
    return request.param


@pytest.fixture(params=tm.ALL_NUMPY_DTYPES)
def any_numpy_dtype(request):
    """
    Parameterized fixture for all numpy dtypes.

    * bool
    * 'bool'
    * int
    * 'int8'
    * 'uint8'
    * 'int16'
    * 'uint16'
    * 'int32'
    * 'uint32'
    * 'int64'
    * 'uint64'
    * float
    * 'float32'
    * 'float64'
    * complex
    * 'complex64'
    * 'complex128'
    * str
    * 'str'
    * 'U'
    * bytes
    * 'bytes'
    * 'datetime64[ns]'
    * 'M8[ns]'
    * 'timedelta64[ns]'
    * 'm8[ns]'
    * object
    * 'object'
    """
    return request.param


@pytest.fixture(params=tm.ALL_REAL_NULLABLE_DTYPES)
def any_real_nullable_dtype(request):
    """
    Parameterized fixture for all real dtypes that can hold NA.

    * float
    * 'float32'
    * 'float64'
    * 'Float32'
    * 'Float64'
    * 'UInt8'
    * 'UInt16'
    * 'UInt32'
    * 'UInt64'
    * 'Int8'
    * 'Int16'
    * 'Int32'
    * 'Int64'
    * 'uint8[pyarrow]'
    * 'uint16[pyarrow]'
    * 'uint32[pyarrow]'
    * 'uint64[pyarrow]'
    * 'int8[pyarrow]'
    * 'int16[pyarrow]'
    * 'int32[pyarrow]'
    * 'int64[pyarrow]'
    * 'float[pyarrow]'
    * 'double[pyarrow]'
    """
    return request.param


@pytest.fixture(params=tm.ALL_NUMERIC_DTYPES)
def any_numeric_dtype(request):
    """
    Parameterized fixture for all numeric dtypes.

    * int
    * 'int8'
    * 'uint8'
    * 'int16'
    * 'uint16'
    * 'int32'
    * 'uint32'
    * 'int64'
    * 'uint64'
    * float
    * 'float32'
    * 'float64'
    * complex
    * 'complex64'
    * 'complex128'
    * 'UInt8'
    * 'Int8'
    * 'UInt16'
    * 'Int16'
    * 'UInt32'
    * 'Int32'
    * 'UInt64'
    * 'Int64'
    * 'Float32'
    * 'Float64'
    """
    return request.param


# categoricals are handled separately
_any_skipna_inferred_dtype = [
    ("string", ["a", np.nan, "c"]),
    ("string", ["a", pd.NA, "c"]),
    ("mixed", ["a", pd.NaT, "c"]),  # pd.NaT not considered valid by is_string_array
    ("bytes", [b"a", np.nan, b"c"]),
    ("empty", [np.nan, np.nan, np.nan]),
    ("empty", []),
    ("mixed-integer", ["a", np.nan, 2]),
    ("mixed", ["a", np.nan, 2.0]),
    ("floating", [1.0, np.nan, 2.0]),
    ("integer", [1, np.nan, 2]),
    ("mixed-integer-float", [1, np.nan, 2.0]),
    ("decimal", [Decimal(1), np.nan, Decimal(2)]),
    ("boolean", [True, np.nan, False]),
    ("boolean", [True, pd.NA, False]),
    ("datetime64", [np.datetime64("2013-01-01"), np.nan, np.datetime64("2018-01-01")]),
    ("datetime", [Timestamp("20130101"), np.nan, Timestamp("20180101")]),
    ("date", [date(2013, 1, 1), np.nan, date(2018, 1, 1)]),
    ("complex", [1 + 1j, np.nan, 2 + 2j]),
    # The following dtype is commented out due to GH 23554
    # ('timedelta64', [np.timedelta64(1, 'D'),
    #                  np.nan, np.timedelta64(2, 'D')]),
    ("timedelta", [timedelta(1), np.nan, timedelta(2)]),
    ("time", [time(1), np.nan, time(2)]),
    ("period", [Period(2013), pd.NaT, Period(2018)]),
    ("interval", [Interval(0, 1), np.nan, Interval(0, 2)]),
]
ids, _ = zip(*_any_skipna_inferred_dtype)  # use inferred type as fixture-id


@pytest.fixture(params=_any_skipna_inferred_dtype, ids=ids)
def any_skipna_inferred_dtype(request):
    """
    Fixture for all inferred dtypes from _libs.lib.infer_dtype

    The covered (inferred) types are:
    * 'string'
    * 'empty'
    * 'bytes'
    * 'mixed'
    * 'mixed-integer'
    * 'mixed-integer-float'
    * 'floating'
    * 'integer'
    * 'decimal'
    * 'boolean'
    * 'datetime64'
    * 'datetime'
    * 'date'
    * 'timedelta'
    * 'time'
    * 'period'
    * 'interval'

    Returns
    -------
    inferred_dtype : str
        The string for the inferred dtype from _libs.lib.infer_dtype
    values : np.ndarray
        An array of object dtype that will be inferred to have
        `inferred_dtype`

    Examples
    --------
    >>> from pandas._libs import lib
    >>>
    >>> def test_something(any_skipna_inferred_dtype):
    ...     inferred_dtype, values = any_skipna_inferred_dtype
    ...     # will pass
    ...     assert lib.infer_dtype(values, skipna=True) == inferred_dtype
    """
    inferred_dtype, values = request.param
    values = np.array(values, dtype=object)  # object dtype to avoid casting

    # correctness of inference tested in tests/dtypes/test_inference.py
    return inferred_dtype, values


# ----------------------------------------------------------------
# Misc
# ----------------------------------------------------------------
@pytest.fixture
def ip():
    """
    Get an instance of IPython.InteractiveShell.

    Will raise a skip if IPython is not installed.
    """
    pytest.importorskip("IPython", minversion="6.0.0")
    from IPython.core.interactiveshell import InteractiveShell

    # GH#35711 make sure sqlite history file handle is not leaked
    from traitlets.config import Config  # isort:skip

    c = Config()
    c.HistoryManager.hist_file = ":memory:"

    return InteractiveShell(config=c)


@pytest.fixture(params=["bsr", "coo", "csc", "csr", "dia", "dok", "lil"])
def spmatrix(request):
    """
    Yields scipy sparse matrix classes.
    """
    sparse = pytest.importorskip("scipy.sparse")

    return getattr(sparse, request.param + "_matrix")


@pytest.fixture(
    params=[
        getattr(pd.offsets, o)
        for o in pd.offsets.__all__
        if issubclass(getattr(pd.offsets, o), pd.offsets.Tick) and o != "Tick"
    ]
)
def tick_classes(request):
    """
    Fixture for Tick based datetime offsets available for a time series.
    """
    return request.param


@pytest.fixture(params=[None, lambda x: x])
def sort_by_key(request):
    """
    Simple fixture for testing keys in sorting methods.
    Tests None (no key) and the identity key.
    """
    return request.param


@pytest.fixture(
    params=[
        ("foo", None, None),
        ("Egon", "Venkman", None),
        ("NCC1701D", "NCC1701D", "NCC1701D"),
        # possibly-matching NAs
        (np.nan, np.nan, np.nan),
        (np.nan, pd.NaT, None),
        (np.nan, pd.NA, None),
        (pd.NA, pd.NA, pd.NA),
    ]
)
def names(request) -> tuple[Hashable, Hashable, Hashable]:
    """
    A 3-tuple of names, the first two for operands, the last for a result.
    """
    return request.param


@pytest.fixture(params=[tm.setitem, tm.loc, tm.iloc])
def indexer_sli(request):
    """
    Parametrize over __setitem__, loc.__setitem__, iloc.__setitem__
    """
    return request.param


@pytest.fixture(params=[tm.loc, tm.iloc])
def indexer_li(request):
    """
    Parametrize over loc.__getitem__, iloc.__getitem__
    """
    return request.param


@pytest.fixture(params=[tm.setitem, tm.iloc])
def indexer_si(request):
    """
    Parametrize over __setitem__, iloc.__setitem__
    """
    return request.param


@pytest.fixture(params=[tm.setitem, tm.loc])
def indexer_sl(request):
    """
    Parametrize over __setitem__, loc.__setitem__
    """
    return request.param


@pytest.fixture(params=[tm.at, tm.loc])
def indexer_al(request):
    """
    Parametrize over at.__setitem__, loc.__setitem__
    """
    return request.param


@pytest.fixture(params=[tm.iat, tm.iloc])
def indexer_ial(request):
    """
    Parametrize over iat.__setitem__, iloc.__setitem__
    """
    return request.param


@pytest.fixture
def using_array_manager() -> bool:
    """
    Fixture to check if the array manager is being used.
    """
    return _get_option("mode.data_manager", silent=True) == "array"


@pytest.fixture
def using_copy_on_write() -> bool:
    """
    Fixture to check if Copy-on-Write is enabled.
    """
    return (
        pd.options.mode.copy_on_write is True
        and _get_option("mode.data_manager", silent=True) == "block"
    )


@pytest.fixture
def warn_copy_on_write() -> bool:
    """
    Fixture to check if Copy-on-Write is in warning mode.
    """
    return (
        pd.options.mode.copy_on_write == "warn"
        and _get_option("mode.data_manager", silent=True) == "block"
    )


@pytest.fixture
def using_infer_string() -> bool:
    """
    Fixture to check if infer string option is enabled.
    """
    return pd.options.future.infer_string is True


warsaws = ["Europe/Warsaw", "dateutil/Europe/Warsaw"]
if zoneinfo is not None:
    warsaws.append(zoneinfo.ZoneInfo("Europe/Warsaw"))  # type: ignore[arg-type]


@pytest.fixture(params=warsaws)
def warsaw(request) -> str:
    """
    tzinfo for Europe/Warsaw using pytz, dateutil, or zoneinfo.
    """
    return request.param


@pytest.fixture()
def arrow_string_storage():
    return ("pyarrow", "pyarrow_numpy")