File size: 4,063 Bytes
6370773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from typing import (
    Any,
    Callable,
    Literal,
)

import numpy as np

from pandas._typing import (
    WindowingRankType,
    npt,
)

def roll_sum(
    values: np.ndarray,  # const float64_t[:]
    start: np.ndarray,  # np.ndarray[np.int64]
    end: np.ndarray,  # np.ndarray[np.int64]
    minp: int,  # int64_t
) -> np.ndarray: ...  # np.ndarray[float]
def roll_mean(
    values: np.ndarray,  # const float64_t[:]
    start: np.ndarray,  # np.ndarray[np.int64]
    end: np.ndarray,  # np.ndarray[np.int64]
    minp: int,  # int64_t
) -> np.ndarray: ...  # np.ndarray[float]
def roll_var(
    values: np.ndarray,  # const float64_t[:]
    start: np.ndarray,  # np.ndarray[np.int64]
    end: np.ndarray,  # np.ndarray[np.int64]
    minp: int,  # int64_t
    ddof: int = ...,
) -> np.ndarray: ...  # np.ndarray[float]
def roll_skew(
    values: np.ndarray,  # np.ndarray[np.float64]
    start: np.ndarray,  # np.ndarray[np.int64]
    end: np.ndarray,  # np.ndarray[np.int64]
    minp: int,  # int64_t
) -> np.ndarray: ...  # np.ndarray[float]
def roll_kurt(
    values: np.ndarray,  # np.ndarray[np.float64]
    start: np.ndarray,  # np.ndarray[np.int64]
    end: np.ndarray,  # np.ndarray[np.int64]
    minp: int,  # int64_t
) -> np.ndarray: ...  # np.ndarray[float]
def roll_median_c(
    values: np.ndarray,  # np.ndarray[np.float64]
    start: np.ndarray,  # np.ndarray[np.int64]
    end: np.ndarray,  # np.ndarray[np.int64]
    minp: int,  # int64_t
) -> np.ndarray: ...  # np.ndarray[float]
def roll_max(
    values: np.ndarray,  # np.ndarray[np.float64]
    start: np.ndarray,  # np.ndarray[np.int64]
    end: np.ndarray,  # np.ndarray[np.int64]
    minp: int,  # int64_t
) -> np.ndarray: ...  # np.ndarray[float]
def roll_min(
    values: np.ndarray,  # np.ndarray[np.float64]
    start: np.ndarray,  # np.ndarray[np.int64]
    end: np.ndarray,  # np.ndarray[np.int64]
    minp: int,  # int64_t
) -> np.ndarray: ...  # np.ndarray[float]
def roll_quantile(
    values: np.ndarray,  # const float64_t[:]
    start: np.ndarray,  # np.ndarray[np.int64]
    end: np.ndarray,  # np.ndarray[np.int64]
    minp: int,  # int64_t
    quantile: float,  # float64_t
    interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
) -> np.ndarray: ...  # np.ndarray[float]
def roll_rank(
    values: np.ndarray,
    start: np.ndarray,
    end: np.ndarray,
    minp: int,
    percentile: bool,
    method: WindowingRankType,
    ascending: bool,
) -> np.ndarray: ...  # np.ndarray[float]
def roll_apply(
    obj: object,
    start: np.ndarray,  # np.ndarray[np.int64]
    end: np.ndarray,  # np.ndarray[np.int64]
    minp: int,  # int64_t
    function: Callable[..., Any],
    raw: bool,
    args: tuple[Any, ...],
    kwargs: dict[str, Any],
) -> npt.NDArray[np.float64]: ...
def roll_weighted_sum(
    values: np.ndarray,  # const float64_t[:]
    weights: np.ndarray,  # const float64_t[:]
    minp: int,
) -> np.ndarray: ...  # np.ndarray[np.float64]
def roll_weighted_mean(
    values: np.ndarray,  # const float64_t[:]
    weights: np.ndarray,  # const float64_t[:]
    minp: int,
) -> np.ndarray: ...  # np.ndarray[np.float64]
def roll_weighted_var(
    values: np.ndarray,  # const float64_t[:]
    weights: np.ndarray,  # const float64_t[:]
    minp: int,  # int64_t
    ddof: int,  # unsigned int
) -> np.ndarray: ...  # np.ndarray[np.float64]
def ewm(
    vals: np.ndarray,  # const float64_t[:]
    start: np.ndarray,  # const int64_t[:]
    end: np.ndarray,  # const int64_t[:]
    minp: int,
    com: float,  # float64_t
    adjust: bool,
    ignore_na: bool,
    deltas: np.ndarray | None = None,  # const float64_t[:]
    normalize: bool = True,
) -> np.ndarray: ...  # np.ndarray[np.float64]
def ewmcov(
    input_x: np.ndarray,  # const float64_t[:]
    start: np.ndarray,  # const int64_t[:]
    end: np.ndarray,  # const int64_t[:]
    minp: int,
    input_y: np.ndarray,  # const float64_t[:]
    com: float,  # float64_t
    adjust: bool,
    ignore_na: bool,
    bias: bool,
) -> np.ndarray: ...  # np.ndarray[np.float64]