File size: 7,251 Bytes
6370773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from typing import Literal

import numpy as np

from pandas._typing import npt

def group_median_float64(
    out: np.ndarray,  # ndarray[float64_t, ndim=2]
    counts: npt.NDArray[np.int64],
    values: np.ndarray,  # ndarray[float64_t, ndim=2]
    labels: npt.NDArray[np.int64],
    min_count: int = ...,  # Py_ssize_t
    mask: np.ndarray | None = ...,
    result_mask: np.ndarray | None = ...,
) -> None: ...
def group_cumprod(
    out: np.ndarray,  # float64_t[:, ::1]
    values: np.ndarray,  # const float64_t[:, :]
    labels: np.ndarray,  # const int64_t[:]
    ngroups: int,
    is_datetimelike: bool,
    skipna: bool = ...,
    mask: np.ndarray | None = ...,
    result_mask: np.ndarray | None = ...,
) -> None: ...
def group_cumsum(
    out: np.ndarray,  # int64float_t[:, ::1]
    values: np.ndarray,  # ndarray[int64float_t, ndim=2]
    labels: np.ndarray,  # const int64_t[:]
    ngroups: int,
    is_datetimelike: bool,
    skipna: bool = ...,
    mask: np.ndarray | None = ...,
    result_mask: np.ndarray | None = ...,
) -> None: ...
def group_shift_indexer(
    out: np.ndarray,  # int64_t[::1]
    labels: np.ndarray,  # const int64_t[:]
    ngroups: int,
    periods: int,
) -> None: ...
def group_fillna_indexer(
    out: np.ndarray,  # ndarray[intp_t]
    labels: np.ndarray,  # ndarray[int64_t]
    sorted_labels: npt.NDArray[np.intp],
    mask: npt.NDArray[np.uint8],
    limit: int,  # int64_t
    dropna: bool,
) -> None: ...
def group_any_all(
    out: np.ndarray,  # uint8_t[::1]
    values: np.ndarray,  # const uint8_t[::1]
    labels: np.ndarray,  # const int64_t[:]
    mask: np.ndarray,  # const uint8_t[::1]
    val_test: Literal["any", "all"],
    skipna: bool,
    result_mask: np.ndarray | None,
) -> None: ...
def group_sum(
    out: np.ndarray,  # complexfloatingintuint_t[:, ::1]
    counts: np.ndarray,  # int64_t[::1]
    values: np.ndarray,  # ndarray[complexfloatingintuint_t, ndim=2]
    labels: np.ndarray,  # const intp_t[:]
    mask: np.ndarray | None,
    result_mask: np.ndarray | None = ...,
    min_count: int = ...,
    is_datetimelike: bool = ...,
) -> None: ...
def group_prod(
    out: np.ndarray,  # int64float_t[:, ::1]
    counts: np.ndarray,  # int64_t[::1]
    values: np.ndarray,  # ndarray[int64float_t, ndim=2]
    labels: np.ndarray,  # const intp_t[:]
    mask: np.ndarray | None,
    result_mask: np.ndarray | None = ...,
    min_count: int = ...,
) -> None: ...
def group_var(
    out: np.ndarray,  # floating[:, ::1]
    counts: np.ndarray,  # int64_t[::1]
    values: np.ndarray,  # ndarray[floating, ndim=2]
    labels: np.ndarray,  # const intp_t[:]
    min_count: int = ...,  # Py_ssize_t
    ddof: int = ...,  # int64_t
    mask: np.ndarray | None = ...,
    result_mask: np.ndarray | None = ...,
    is_datetimelike: bool = ...,
    name: str = ...,
) -> None: ...
def group_skew(
    out: np.ndarray,  # float64_t[:, ::1]
    counts: np.ndarray,  # int64_t[::1]
    values: np.ndarray,  # ndarray[float64_T, ndim=2]
    labels: np.ndarray,  # const intp_t[::1]
    mask: np.ndarray | None = ...,
    result_mask: np.ndarray | None = ...,
    skipna: bool = ...,
) -> None: ...
def group_mean(
    out: np.ndarray,  # floating[:, ::1]
    counts: np.ndarray,  # int64_t[::1]
    values: np.ndarray,  # ndarray[floating, ndim=2]
    labels: np.ndarray,  # const intp_t[:]
    min_count: int = ...,  # Py_ssize_t
    is_datetimelike: bool = ...,  # bint
    mask: np.ndarray | None = ...,
    result_mask: np.ndarray | None = ...,
) -> None: ...
def group_ohlc(
    out: np.ndarray,  # floatingintuint_t[:, ::1]
    counts: np.ndarray,  # int64_t[::1]
    values: np.ndarray,  # ndarray[floatingintuint_t, ndim=2]
    labels: np.ndarray,  # const intp_t[:]
    min_count: int = ...,
    mask: np.ndarray | None = ...,
    result_mask: np.ndarray | None = ...,
) -> None: ...
def group_quantile(
    out: npt.NDArray[np.float64],
    values: np.ndarray,  # ndarray[numeric, ndim=1]
    labels: npt.NDArray[np.intp],
    mask: npt.NDArray[np.uint8],
    qs: npt.NDArray[np.float64],  # const
    starts: npt.NDArray[np.int64],
    ends: npt.NDArray[np.int64],
    interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
    result_mask: np.ndarray | None,
    is_datetimelike: bool,
) -> None: ...
def group_last(
    out: np.ndarray,  # rank_t[:, ::1]
    counts: np.ndarray,  # int64_t[::1]
    values: np.ndarray,  # ndarray[rank_t, ndim=2]
    labels: np.ndarray,  # const int64_t[:]
    mask: npt.NDArray[np.bool_] | None,
    result_mask: npt.NDArray[np.bool_] | None = ...,
    min_count: int = ...,  # Py_ssize_t
    is_datetimelike: bool = ...,
    skipna: bool = ...,
) -> None: ...
def group_nth(
    out: np.ndarray,  # rank_t[:, ::1]
    counts: np.ndarray,  # int64_t[::1]
    values: np.ndarray,  # ndarray[rank_t, ndim=2]
    labels: np.ndarray,  # const int64_t[:]
    mask: npt.NDArray[np.bool_] | None,
    result_mask: npt.NDArray[np.bool_] | None = ...,
    min_count: int = ...,  # int64_t
    rank: int = ...,  # int64_t
    is_datetimelike: bool = ...,
    skipna: bool = ...,
) -> None: ...
def group_rank(
    out: np.ndarray,  # float64_t[:, ::1]
    values: np.ndarray,  # ndarray[rank_t, ndim=2]
    labels: np.ndarray,  # const int64_t[:]
    ngroups: int,
    is_datetimelike: bool,
    ties_method: Literal["average", "min", "max", "first", "dense"] = ...,
    ascending: bool = ...,
    pct: bool = ...,
    na_option: Literal["keep", "top", "bottom"] = ...,
    mask: npt.NDArray[np.bool_] | None = ...,
) -> None: ...
def group_max(
    out: np.ndarray,  # groupby_t[:, ::1]
    counts: np.ndarray,  # int64_t[::1]
    values: np.ndarray,  # ndarray[groupby_t, ndim=2]
    labels: np.ndarray,  # const int64_t[:]
    min_count: int = ...,
    is_datetimelike: bool = ...,
    mask: np.ndarray | None = ...,
    result_mask: np.ndarray | None = ...,
) -> None: ...
def group_min(
    out: np.ndarray,  # groupby_t[:, ::1]
    counts: np.ndarray,  # int64_t[::1]
    values: np.ndarray,  # ndarray[groupby_t, ndim=2]
    labels: np.ndarray,  # const int64_t[:]
    min_count: int = ...,
    is_datetimelike: bool = ...,
    mask: np.ndarray | None = ...,
    result_mask: np.ndarray | None = ...,
) -> None: ...
def group_idxmin_idxmax(
    out: npt.NDArray[np.intp],
    counts: npt.NDArray[np.int64],
    values: np.ndarray,  # ndarray[groupby_t, ndim=2]
    labels: npt.NDArray[np.intp],
    min_count: int = ...,
    is_datetimelike: bool = ...,
    mask: np.ndarray | None = ...,
    name: str = ...,
    skipna: bool = ...,
    result_mask: np.ndarray | None = ...,
) -> None: ...
def group_cummin(
    out: np.ndarray,  # groupby_t[:, ::1]
    values: np.ndarray,  # ndarray[groupby_t, ndim=2]
    labels: np.ndarray,  # const int64_t[:]
    ngroups: int,
    is_datetimelike: bool,
    mask: np.ndarray | None = ...,
    result_mask: np.ndarray | None = ...,
    skipna: bool = ...,
) -> None: ...
def group_cummax(
    out: np.ndarray,  # groupby_t[:, ::1]
    values: np.ndarray,  # ndarray[groupby_t, ndim=2]
    labels: np.ndarray,  # const int64_t[:]
    ngroups: int,
    is_datetimelike: bool,
    mask: np.ndarray | None = ...,
    result_mask: np.ndarray | None = ...,
    skipna: bool = ...,
) -> None: ...