File size: 15,182 Bytes
6370773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
from typing import Any

import numpy as np

from pandas._typing import npt

class Infinity:
    def __eq__(self, other) -> bool: ...
    def __ne__(self, other) -> bool: ...
    def __lt__(self, other) -> bool: ...
    def __le__(self, other) -> bool: ...
    def __gt__(self, other) -> bool: ...
    def __ge__(self, other) -> bool: ...

class NegInfinity:
    def __eq__(self, other) -> bool: ...
    def __ne__(self, other) -> bool: ...
    def __lt__(self, other) -> bool: ...
    def __le__(self, other) -> bool: ...
    def __gt__(self, other) -> bool: ...
    def __ge__(self, other) -> bool: ...

def unique_deltas(
    arr: np.ndarray,  # const int64_t[:]
) -> np.ndarray: ...  # np.ndarray[np.int64, ndim=1]
def is_lexsorted(list_of_arrays: list[npt.NDArray[np.int64]]) -> bool: ...
def groupsort_indexer(
    index: np.ndarray,  # const int64_t[:]
    ngroups: int,
) -> tuple[
    np.ndarray,  # ndarray[int64_t, ndim=1]
    np.ndarray,  # ndarray[int64_t, ndim=1]
]: ...
def kth_smallest(
    arr: np.ndarray,  # numeric[:]
    k: int,
) -> Any: ...  # numeric

# ----------------------------------------------------------------------
# Pairwise correlation/covariance

def nancorr(
    mat: npt.NDArray[np.float64],  # const float64_t[:, :]
    cov: bool = ...,
    minp: int | None = ...,
) -> npt.NDArray[np.float64]: ...  # ndarray[float64_t, ndim=2]
def nancorr_spearman(
    mat: npt.NDArray[np.float64],  # ndarray[float64_t, ndim=2]
    minp: int = ...,
) -> npt.NDArray[np.float64]: ...  # ndarray[float64_t, ndim=2]

# ----------------------------------------------------------------------

def validate_limit(nobs: int | None, limit=...) -> int: ...
def get_fill_indexer(
    mask: npt.NDArray[np.bool_],
    limit: int | None = None,
) -> npt.NDArray[np.intp]: ...
def pad(
    old: np.ndarray,  # ndarray[numeric_object_t]
    new: np.ndarray,  # ndarray[numeric_object_t]
    limit=...,
) -> npt.NDArray[np.intp]: ...  # np.ndarray[np.intp, ndim=1]
def pad_inplace(
    values: np.ndarray,  # numeric_object_t[:]
    mask: np.ndarray,  # uint8_t[:]
    limit=...,
) -> None: ...
def pad_2d_inplace(
    values: np.ndarray,  # numeric_object_t[:, :]
    mask: np.ndarray,  # const uint8_t[:, :]
    limit=...,
) -> None: ...
def backfill(
    old: np.ndarray,  # ndarray[numeric_object_t]
    new: np.ndarray,  # ndarray[numeric_object_t]
    limit=...,
) -> npt.NDArray[np.intp]: ...  # np.ndarray[np.intp, ndim=1]
def backfill_inplace(
    values: np.ndarray,  # numeric_object_t[:]
    mask: np.ndarray,  # uint8_t[:]
    limit=...,
) -> None: ...
def backfill_2d_inplace(
    values: np.ndarray,  # numeric_object_t[:, :]
    mask: np.ndarray,  # const uint8_t[:, :]
    limit=...,
) -> None: ...
def is_monotonic(
    arr: np.ndarray,  # ndarray[numeric_object_t, ndim=1]
    timelike: bool,
) -> tuple[bool, bool, bool]: ...

# ----------------------------------------------------------------------
# rank_1d, rank_2d
# ----------------------------------------------------------------------

def rank_1d(
    values: np.ndarray,  # ndarray[numeric_object_t, ndim=1]
    labels: np.ndarray | None = ...,  # const int64_t[:]=None
    is_datetimelike: bool = ...,
    ties_method=...,
    ascending: bool = ...,
    pct: bool = ...,
    na_option=...,
    mask: npt.NDArray[np.bool_] | None = ...,
) -> np.ndarray: ...  # np.ndarray[float64_t, ndim=1]
def rank_2d(
    in_arr: np.ndarray,  # ndarray[numeric_object_t, ndim=2]
    axis: int = ...,
    is_datetimelike: bool = ...,
    ties_method=...,
    ascending: bool = ...,
    na_option=...,
    pct: bool = ...,
) -> np.ndarray: ...  # np.ndarray[float64_t, ndim=1]
def diff_2d(
    arr: np.ndarray,  # ndarray[diff_t, ndim=2]
    out: np.ndarray,  # ndarray[out_t, ndim=2]
    periods: int,
    axis: int,
    datetimelike: bool = ...,
) -> None: ...
def ensure_platform_int(arr: object) -> npt.NDArray[np.intp]: ...
def ensure_object(arr: object) -> npt.NDArray[np.object_]: ...
def ensure_float64(arr: object) -> npt.NDArray[np.float64]: ...
def ensure_int8(arr: object) -> npt.NDArray[np.int8]: ...
def ensure_int16(arr: object) -> npt.NDArray[np.int16]: ...
def ensure_int32(arr: object) -> npt.NDArray[np.int32]: ...
def ensure_int64(arr: object) -> npt.NDArray[np.int64]: ...
def ensure_uint64(arr: object) -> npt.NDArray[np.uint64]: ...
def take_1d_int8_int8(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_int8_int32(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_int8_int64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_int8_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_int16_int16(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_int16_int32(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_int16_int64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_int16_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_int32_int32(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_int32_int64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_int32_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_int64_int64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_int64_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_float32_float32(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_float32_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_float64_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_object_object(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_bool_bool(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_1d_bool_object(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_int8_int8(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_int8_int32(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_int8_int64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_int8_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_int16_int16(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_int16_int32(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_int16_int64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_int16_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_int32_int32(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_int32_int64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_int32_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_int64_int64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_int64_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_float32_float32(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_float32_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_float64_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_object_object(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_bool_bool(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis0_bool_object(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_int8_int8(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_int8_int32(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_int8_int64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_int8_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_int16_int16(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_int16_int32(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_int16_int64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_int16_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_int32_int32(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_int32_int64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_int32_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_int64_int64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_int64_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_float32_float32(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_float32_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_float64_float64(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_object_object(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_bool_bool(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_axis1_bool_object(
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
) -> None: ...
def take_2d_multi_int8_int8(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_int8_int32(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_int8_int64(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_int8_float64(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_int16_int16(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_int16_int32(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_int16_int64(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_int16_float64(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_int32_int32(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_int32_int64(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_int32_float64(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_int64_float64(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_float32_float32(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_float32_float64(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_float64_float64(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_object_object(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_bool_bool(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_bool_object(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...
def take_2d_multi_int64_int64(
    values: np.ndarray,
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
    out: np.ndarray,
    fill_value=...,
) -> None: ...