File size: 6,760 Bytes
6370773 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
"""
A sub-package for efficiently dealing with polynomials.
Within the documentation for this sub-package, a "finite power series,"
i.e., a polynomial (also referred to simply as a "series") is represented
by a 1-D numpy array of the polynomial's coefficients, ordered from lowest
order term to highest. For example, array([1,2,3]) represents
``P_0 + 2*P_1 + 3*P_2``, where P_n is the n-th order basis polynomial
applicable to the specific module in question, e.g., `polynomial` (which
"wraps" the "standard" basis) or `chebyshev`. For optimal performance,
all operations on polynomials, including evaluation at an argument, are
implemented as operations on the coefficients. Additional (module-specific)
information can be found in the docstring for the module of interest.
This package provides *convenience classes* for each of six different kinds
of polynomials:
======================== ================
**Name** **Provides**
======================== ================
`~polynomial.Polynomial` Power series
`~chebyshev.Chebyshev` Chebyshev series
`~legendre.Legendre` Legendre series
`~laguerre.Laguerre` Laguerre series
`~hermite.Hermite` Hermite series
`~hermite_e.HermiteE` HermiteE series
======================== ================
These *convenience classes* provide a consistent interface for creating,
manipulating, and fitting data with polynomials of different bases.
The convenience classes are the preferred interface for the `~numpy.polynomial`
package, and are available from the ``numpy.polynomial`` namespace.
This eliminates the need to navigate to the corresponding submodules, e.g.
``np.polynomial.Polynomial`` or ``np.polynomial.Chebyshev`` instead of
``np.polynomial.polynomial.Polynomial`` or
``np.polynomial.chebyshev.Chebyshev``, respectively.
The classes provide a more consistent and concise interface than the
type-specific functions defined in the submodules for each type of polynomial.
For example, to fit a Chebyshev polynomial with degree ``1`` to data given
by arrays ``xdata`` and ``ydata``, the
`~chebyshev.Chebyshev.fit` class method::
>>> from numpy.polynomial import Chebyshev
>>> xdata = [1, 2, 3, 4]
>>> ydata = [1, 4, 9, 16]
>>> c = Chebyshev.fit(xdata, ydata, deg=1)
is preferred over the `chebyshev.chebfit` function from the
``np.polynomial.chebyshev`` module::
>>> from numpy.polynomial.chebyshev import chebfit
>>> c = chebfit(xdata, ydata, deg=1)
See :doc:`routines.polynomials.classes` for more details.
Convenience Classes
===================
The following lists the various constants and methods common to all of
the classes representing the various kinds of polynomials. In the following,
the term ``Poly`` represents any one of the convenience classes (e.g.
`~polynomial.Polynomial`, `~chebyshev.Chebyshev`, `~hermite.Hermite`, etc.)
while the lowercase ``p`` represents an **instance** of a polynomial class.
Constants
---------
- ``Poly.domain`` -- Default domain
- ``Poly.window`` -- Default window
- ``Poly.basis_name`` -- String used to represent the basis
- ``Poly.maxpower`` -- Maximum value ``n`` such that ``p**n`` is allowed
- ``Poly.nickname`` -- String used in printing
Creation
--------
Methods for creating polynomial instances.
- ``Poly.basis(degree)`` -- Basis polynomial of given degree
- ``Poly.identity()`` -- ``p`` where ``p(x) = x`` for all ``x``
- ``Poly.fit(x, y, deg)`` -- ``p`` of degree ``deg`` with coefficients
determined by the least-squares fit to the data ``x``, ``y``
- ``Poly.fromroots(roots)`` -- ``p`` with specified roots
- ``p.copy()`` -- Create a copy of ``p``
Conversion
----------
Methods for converting a polynomial instance of one kind to another.
- ``p.cast(Poly)`` -- Convert ``p`` to instance of kind ``Poly``
- ``p.convert(Poly)`` -- Convert ``p`` to instance of kind ``Poly`` or map
between ``domain`` and ``window``
Calculus
--------
- ``p.deriv()`` -- Take the derivative of ``p``
- ``p.integ()`` -- Integrate ``p``
Validation
----------
- ``Poly.has_samecoef(p1, p2)`` -- Check if coefficients match
- ``Poly.has_samedomain(p1, p2)`` -- Check if domains match
- ``Poly.has_sametype(p1, p2)`` -- Check if types match
- ``Poly.has_samewindow(p1, p2)`` -- Check if windows match
Misc
----
- ``p.linspace()`` -- Return ``x, p(x)`` at equally-spaced points in ``domain``
- ``p.mapparms()`` -- Return the parameters for the linear mapping between
``domain`` and ``window``.
- ``p.roots()`` -- Return the roots of ``p``.
- ``p.trim()`` -- Remove trailing coefficients.
- ``p.cutdeg(degree)`` -- Truncate ``p`` to given degree
- ``p.truncate(size)`` -- Truncate ``p`` to given size
"""
from .polynomial import Polynomial
from .chebyshev import Chebyshev
from .legendre import Legendre
from .hermite import Hermite
from .hermite_e import HermiteE
from .laguerre import Laguerre
__all__ = [
"set_default_printstyle",
"polynomial", "Polynomial",
"chebyshev", "Chebyshev",
"legendre", "Legendre",
"hermite", "Hermite",
"hermite_e", "HermiteE",
"laguerre", "Laguerre",
]
def set_default_printstyle(style):
"""
Set the default format for the string representation of polynomials.
Values for ``style`` must be valid inputs to ``__format__``, i.e. 'ascii'
or 'unicode'.
Parameters
----------
style : str
Format string for default printing style. Must be either 'ascii' or
'unicode'.
Notes
-----
The default format depends on the platform: 'unicode' is used on
Unix-based systems and 'ascii' on Windows. This determination is based on
default font support for the unicode superscript and subscript ranges.
Examples
--------
>>> p = np.polynomial.Polynomial([1, 2, 3])
>>> c = np.polynomial.Chebyshev([1, 2, 3])
>>> np.polynomial.set_default_printstyle('unicode')
>>> print(p)
1.0 + 2.0·x + 3.0·x²
>>> print(c)
1.0 + 2.0·T₁(x) + 3.0·T₂(x)
>>> np.polynomial.set_default_printstyle('ascii')
>>> print(p)
1.0 + 2.0 x + 3.0 x**2
>>> print(c)
1.0 + 2.0 T_1(x) + 3.0 T_2(x)
>>> # Formatting supersedes all class/package-level defaults
>>> print(f"{p:unicode}")
1.0 + 2.0·x + 3.0·x²
"""
if style not in ('unicode', 'ascii'):
raise ValueError(
f"Unsupported format string '{style}'. Valid options are 'ascii' "
f"and 'unicode'"
)
_use_unicode = True
if style == 'ascii':
_use_unicode = False
from ._polybase import ABCPolyBase
ABCPolyBase._use_unicode = _use_unicode
from numpy._pytesttester import PytestTester
test = PytestTester(__name__)
del PytestTester
|