File size: 24,412 Bytes
6370773 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
import numpy as np
import pytest
from numpy.random import random
from numpy.testing import (
assert_array_equal, assert_raises, assert_allclose, IS_WASM
)
import threading
import queue
def fft1(x):
L = len(x)
phase = -2j * np.pi * (np.arange(L) / L)
phase = np.arange(L).reshape(-1, 1) * phase
return np.sum(x*np.exp(phase), axis=1)
class TestFFTShift:
def test_fft_n(self):
assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0)
class TestFFT1D:
def test_identity(self):
maxlen = 512
x = random(maxlen) + 1j*random(maxlen)
xr = random(maxlen)
for i in range(1, maxlen):
assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i],
atol=1e-12)
assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i),
xr[0:i], atol=1e-12)
@pytest.mark.parametrize("dtype", [np.single, np.double, np.longdouble])
def test_identity_long_short(self, dtype):
# Test with explicitly given number of points, both for n
# smaller and for n larger than the input size.
maxlen = 16
atol = 5 * np.spacing(np.array(1., dtype=dtype))
x = random(maxlen).astype(dtype) + 1j*random(maxlen).astype(dtype)
xx = np.concatenate([x, np.zeros_like(x)])
xr = random(maxlen).astype(dtype)
xxr = np.concatenate([xr, np.zeros_like(xr)])
for i in range(1, maxlen*2):
check_c = np.fft.ifft(np.fft.fft(x, n=i), n=i)
assert check_c.real.dtype == dtype
assert_allclose(check_c, xx[0:i], atol=atol, rtol=0)
check_r = np.fft.irfft(np.fft.rfft(xr, n=i), n=i)
assert check_r.dtype == dtype
assert_allclose(check_r, xxr[0:i], atol=atol, rtol=0)
@pytest.mark.parametrize("dtype", [np.single, np.double, np.longdouble])
def test_identity_long_short_reversed(self, dtype):
# Also test explicitly given number of points in reversed order.
maxlen = 16
atol = 5 * np.spacing(np.array(1., dtype=dtype))
x = random(maxlen).astype(dtype) + 1j*random(maxlen).astype(dtype)
xx = np.concatenate([x, np.zeros_like(x)])
for i in range(1, maxlen*2):
check_via_c = np.fft.fft(np.fft.ifft(x, n=i), n=i)
assert check_via_c.dtype == x.dtype
assert_allclose(check_via_c, xx[0:i], atol=atol, rtol=0)
# For irfft, we can neither recover the imaginary part of
# the first element, nor the imaginary part of the last
# element if npts is even. So, set to 0 for the comparison.
y = x.copy()
n = i // 2 + 1
y.imag[0] = 0
if i % 2 == 0:
y.imag[n-1:] = 0
yy = np.concatenate([y, np.zeros_like(y)])
check_via_r = np.fft.rfft(np.fft.irfft(x, n=i), n=i)
assert check_via_r.dtype == x.dtype
assert_allclose(check_via_r, yy[0:n], atol=atol, rtol=0)
def test_fft(self):
x = random(30) + 1j*random(30)
assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6)
assert_allclose(fft1(x), np.fft.fft(x, norm="backward"), atol=1e-6)
assert_allclose(fft1(x) / np.sqrt(30),
np.fft.fft(x, norm="ortho"), atol=1e-6)
assert_allclose(fft1(x) / 30.,
np.fft.fft(x, norm="forward"), atol=1e-6)
@pytest.mark.parametrize("axis", (0, 1))
@pytest.mark.parametrize("dtype", (complex, float))
@pytest.mark.parametrize("transpose", (True, False))
def test_fft_out_argument(self, dtype, transpose, axis):
def zeros_like(x):
if transpose:
return np.zeros_like(x.T).T
else:
return np.zeros_like(x)
# tests below only test the out parameter
if dtype is complex:
y = random((10, 20)) + 1j*random((10, 20))
fft, ifft = np.fft.fft, np.fft.ifft
else:
y = random((10, 20))
fft, ifft = np.fft.rfft, np.fft.irfft
expected = fft(y, axis=axis)
out = zeros_like(expected)
result = fft(y, out=out, axis=axis)
assert result is out
assert_array_equal(result, expected)
expected2 = ifft(expected, axis=axis)
out2 = out if dtype is complex else zeros_like(expected2)
result2 = ifft(out, out=out2, axis=axis)
assert result2 is out2
assert_array_equal(result2, expected2)
@pytest.mark.parametrize("axis", [0, 1])
def test_fft_inplace_out(self, axis):
# Test some weirder in-place combinations
y = random((20, 20)) + 1j*random((20, 20))
# Fully in-place.
y1 = y.copy()
expected1 = np.fft.fft(y1, axis=axis)
result1 = np.fft.fft(y1, axis=axis, out=y1)
assert result1 is y1
assert_array_equal(result1, expected1)
# In-place of part of the array; rest should be unchanged.
y2 = y.copy()
out2 = y2[:10] if axis == 0 else y2[:, :10]
expected2 = np.fft.fft(y2, n=10, axis=axis)
result2 = np.fft.fft(y2, n=10, axis=axis, out=out2)
assert result2 is out2
assert_array_equal(result2, expected2)
if axis == 0:
assert_array_equal(y2[10:], y[10:])
else:
assert_array_equal(y2[:, 10:], y[:, 10:])
# In-place of another part of the array.
y3 = y.copy()
y3_sel = y3[5:] if axis == 0 else y3[:, 5:]
out3 = y3[5:15] if axis == 0 else y3[:, 5:15]
expected3 = np.fft.fft(y3_sel, n=10, axis=axis)
result3 = np.fft.fft(y3_sel, n=10, axis=axis, out=out3)
assert result3 is out3
assert_array_equal(result3, expected3)
if axis == 0:
assert_array_equal(y3[:5], y[:5])
assert_array_equal(y3[15:], y[15:])
else:
assert_array_equal(y3[:, :5], y[:, :5])
assert_array_equal(y3[:, 15:], y[:, 15:])
# In-place with n > nin; rest should be unchanged.
y4 = y.copy()
y4_sel = y4[:10] if axis == 0 else y4[:, :10]
out4 = y4[:15] if axis == 0 else y4[:, :15]
expected4 = np.fft.fft(y4_sel, n=15, axis=axis)
result4 = np.fft.fft(y4_sel, n=15, axis=axis, out=out4)
assert result4 is out4
assert_array_equal(result4, expected4)
if axis == 0:
assert_array_equal(y4[15:], y[15:])
else:
assert_array_equal(y4[:, 15:], y[:, 15:])
# Overwrite in a transpose.
y5 = y.copy()
out5 = y5.T
result5 = np.fft.fft(y5, axis=axis, out=out5)
assert result5 is out5
assert_array_equal(result5, expected1)
# Reverse strides.
y6 = y.copy()
out6 = y6[::-1] if axis == 0 else y6[:, ::-1]
result6 = np.fft.fft(y6, axis=axis, out=out6)
assert result6 is out6
assert_array_equal(result6, expected1)
def test_fft_bad_out(self):
x = np.arange(30.)
with pytest.raises(TypeError, match="must be of ArrayType"):
np.fft.fft(x, out="")
with pytest.raises(ValueError, match="has wrong shape"):
np.fft.fft(x, out=np.zeros_like(x).reshape(5, -1))
with pytest.raises(TypeError, match="Cannot cast"):
np.fft.fft(x, out=np.zeros_like(x, dtype=float))
@pytest.mark.parametrize('norm', (None, 'backward', 'ortho', 'forward'))
def test_ifft(self, norm):
x = random(30) + 1j*random(30)
assert_allclose(
x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm),
atol=1e-6)
# Ensure we get the correct error message
with pytest.raises(ValueError,
match='Invalid number of FFT data points'):
np.fft.ifft([], norm=norm)
def test_fft2(self):
x = random((30, 20)) + 1j*random((30, 20))
assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0),
np.fft.fft2(x), atol=1e-6)
assert_allclose(np.fft.fft2(x),
np.fft.fft2(x, norm="backward"), atol=1e-6)
assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20),
np.fft.fft2(x, norm="ortho"), atol=1e-6)
assert_allclose(np.fft.fft2(x) / (30. * 20.),
np.fft.fft2(x, norm="forward"), atol=1e-6)
def test_ifft2(self):
x = random((30, 20)) + 1j*random((30, 20))
assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0),
np.fft.ifft2(x), atol=1e-6)
assert_allclose(np.fft.ifft2(x),
np.fft.ifft2(x, norm="backward"), atol=1e-6)
assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20),
np.fft.ifft2(x, norm="ortho"), atol=1e-6)
assert_allclose(np.fft.ifft2(x) * (30. * 20.),
np.fft.ifft2(x, norm="forward"), atol=1e-6)
def test_fftn(self):
x = random((30, 20, 10)) + 1j*random((30, 20, 10))
assert_allclose(
np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0),
np.fft.fftn(x), atol=1e-6)
assert_allclose(np.fft.fftn(x),
np.fft.fftn(x, norm="backward"), atol=1e-6)
assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
np.fft.fftn(x, norm="ortho"), atol=1e-6)
assert_allclose(np.fft.fftn(x) / (30. * 20. * 10.),
np.fft.fftn(x, norm="forward"), atol=1e-6)
def test_ifftn(self):
x = random((30, 20, 10)) + 1j*random((30, 20, 10))
assert_allclose(
np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0),
np.fft.ifftn(x), atol=1e-6)
assert_allclose(np.fft.ifftn(x),
np.fft.ifftn(x, norm="backward"), atol=1e-6)
assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10),
np.fft.ifftn(x, norm="ortho"), atol=1e-6)
assert_allclose(np.fft.ifftn(x) * (30. * 20. * 10.),
np.fft.ifftn(x, norm="forward"), atol=1e-6)
def test_rfft(self):
x = random(30)
for n in [x.size, 2*x.size]:
for norm in [None, 'backward', 'ortho', 'forward']:
assert_allclose(
np.fft.fft(x, n=n, norm=norm)[:(n//2 + 1)],
np.fft.rfft(x, n=n, norm=norm), atol=1e-6)
assert_allclose(
np.fft.rfft(x, n=n),
np.fft.rfft(x, n=n, norm="backward"), atol=1e-6)
assert_allclose(
np.fft.rfft(x, n=n) / np.sqrt(n),
np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6)
assert_allclose(
np.fft.rfft(x, n=n) / n,
np.fft.rfft(x, n=n, norm="forward"), atol=1e-6)
def test_rfft_even(self):
x = np.arange(8)
n = 4
y = np.fft.rfft(x, n)
assert_allclose(y, np.fft.fft(x[:n])[:n//2 + 1], rtol=1e-14)
def test_rfft_odd(self):
x = np.array([1, 0, 2, 3, -3])
y = np.fft.rfft(x)
assert_allclose(y, np.fft.fft(x)[:3], rtol=1e-14)
def test_irfft(self):
x = random(30)
assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6)
assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="backward"),
norm="backward"), atol=1e-6)
assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="ortho"),
norm="ortho"), atol=1e-6)
assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="forward"),
norm="forward"), atol=1e-6)
def test_rfft2(self):
x = random((30, 20))
assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6)
assert_allclose(np.fft.rfft2(x),
np.fft.rfft2(x, norm="backward"), atol=1e-6)
assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20),
np.fft.rfft2(x, norm="ortho"), atol=1e-6)
assert_allclose(np.fft.rfft2(x) / (30. * 20.),
np.fft.rfft2(x, norm="forward"), atol=1e-6)
def test_irfft2(self):
x = random((30, 20))
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6)
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="backward"),
norm="backward"), atol=1e-6)
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"),
norm="ortho"), atol=1e-6)
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"),
norm="forward"), atol=1e-6)
def test_rfftn(self):
x = random((30, 20, 10))
assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6)
assert_allclose(np.fft.rfftn(x),
np.fft.rfftn(x, norm="backward"), atol=1e-6)
assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10),
np.fft.rfftn(x, norm="ortho"), atol=1e-6)
assert_allclose(np.fft.rfftn(x) / (30. * 20. * 10.),
np.fft.rfftn(x, norm="forward"), atol=1e-6)
# Regression test for gh-27159
x = np.ones((2, 3))
result = np.fft.rfftn(x, axes=(0, 0, 1), s=(10, 20, 40))
assert result.shape == (10, 21)
expected = np.fft.fft(np.fft.fft(np.fft.rfft(x, axis=1, n=40),
axis=0, n=20), axis=0, n=10)
assert expected.shape == (10, 21)
assert_allclose(result, expected, atol=1e-6)
def test_irfftn(self):
x = random((30, 20, 10))
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6)
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="backward"),
norm="backward"), atol=1e-6)
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"),
norm="ortho"), atol=1e-6)
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"),
norm="forward"), atol=1e-6)
def test_hfft(self):
x = random(14) + 1j*random(14)
x_herm = np.concatenate((random(1), x, random(1)))
x = np.concatenate((x_herm, x[::-1].conj()))
assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6)
assert_allclose(np.fft.hfft(x_herm),
np.fft.hfft(x_herm, norm="backward"), atol=1e-6)
assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30),
np.fft.hfft(x_herm, norm="ortho"), atol=1e-6)
assert_allclose(np.fft.hfft(x_herm) / 30.,
np.fft.hfft(x_herm, norm="forward"), atol=1e-6)
def test_ihfft(self):
x = random(14) + 1j*random(14)
x_herm = np.concatenate((random(1), x, random(1)))
x = np.concatenate((x_herm, x[::-1].conj()))
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6)
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
norm="backward"), norm="backward"), atol=1e-6)
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
norm="ortho"), norm="ortho"), atol=1e-6)
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
norm="forward"), norm="forward"), atol=1e-6)
@pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
np.fft.rfftn, np.fft.irfftn])
def test_axes(self, op):
x = random((30, 20, 10))
axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
for a in axes:
op_tr = op(np.transpose(x, a))
tr_op = np.transpose(op(x, axes=a), a)
assert_allclose(op_tr, tr_op, atol=1e-6)
@pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
np.fft.fft2, np.fft.ifft2])
def test_s_negative_1(self, op):
x = np.arange(100).reshape(10, 10)
# should use the whole input array along the first axis
assert op(x, s=(-1, 5), axes=(0, 1)).shape == (10, 5)
@pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
np.fft.rfftn, np.fft.irfftn])
def test_s_axes_none(self, op):
x = np.arange(100).reshape(10, 10)
with pytest.warns(match='`axes` should not be `None` if `s`'):
op(x, s=(-1, 5))
@pytest.mark.parametrize("op", [np.fft.fft2, np.fft.ifft2])
def test_s_axes_none_2D(self, op):
x = np.arange(100).reshape(10, 10)
with pytest.warns(match='`axes` should not be `None` if `s`'):
op(x, s=(-1, 5), axes=None)
@pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
np.fft.rfftn, np.fft.irfftn,
np.fft.fft2, np.fft.ifft2])
def test_s_contains_none(self, op):
x = random((30, 20, 10))
with pytest.warns(match='array containing `None` values to `s`'):
op(x, s=(10, None, 10), axes=(0, 1, 2))
def test_all_1d_norm_preserving(self):
# verify that round-trip transforms are norm-preserving
x = random(30)
x_norm = np.linalg.norm(x)
n = x.size * 2
func_pairs = [(np.fft.fft, np.fft.ifft),
(np.fft.rfft, np.fft.irfft),
# hfft: order so the first function takes x.size samples
# (necessary for comparison to x_norm above)
(np.fft.ihfft, np.fft.hfft),
]
for forw, back in func_pairs:
for n in [x.size, 2*x.size]:
for norm in [None, 'backward', 'ortho', 'forward']:
tmp = forw(x, n=n, norm=norm)
tmp = back(tmp, n=n, norm=norm)
assert_allclose(x_norm,
np.linalg.norm(tmp), atol=1e-6)
@pytest.mark.parametrize("axes", [(0, 1), (0, 2), None])
@pytest.mark.parametrize("dtype", (complex, float))
@pytest.mark.parametrize("transpose", (True, False))
def test_fftn_out_argument(self, dtype, transpose, axes):
def zeros_like(x):
if transpose:
return np.zeros_like(x.T).T
else:
return np.zeros_like(x)
# tests below only test the out parameter
if dtype is complex:
x = random((10, 5, 6)) + 1j*random((10, 5, 6))
fft, ifft = np.fft.fftn, np.fft.ifftn
else:
x = random((10, 5, 6))
fft, ifft = np.fft.rfftn, np.fft.irfftn
expected = fft(x, axes=axes)
out = zeros_like(expected)
result = fft(x, out=out, axes=axes)
assert result is out
assert_array_equal(result, expected)
expected2 = ifft(expected, axes=axes)
out2 = out if dtype is complex else zeros_like(expected2)
result2 = ifft(out, out=out2, axes=axes)
assert result2 is out2
assert_array_equal(result2, expected2)
@pytest.mark.parametrize("fft", [np.fft.fftn, np.fft.ifftn, np.fft.rfftn])
def test_fftn_out_and_s_interaction(self, fft):
# With s, shape varies, so generally one cannot pass in out.
if fft is np.fft.rfftn:
x = random((10, 5, 6))
else:
x = random((10, 5, 6)) + 1j*random((10, 5, 6))
with pytest.raises(ValueError, match="has wrong shape"):
fft(x, out=np.zeros_like(x), s=(3, 3, 3), axes=(0, 1, 2))
# Except on the first axis done (which is the last of axes).
s = (10, 5, 5)
expected = fft(x, s=s, axes=(0, 1, 2))
out = np.zeros_like(expected)
result = fft(x, s=s, axes=(0, 1, 2), out=out)
assert result is out
assert_array_equal(result, expected)
@pytest.mark.parametrize("s", [(9, 5, 5), (3, 3, 3)])
def test_irfftn_out_and_s_interaction(self, s):
# Since for irfftn, the output is real and thus cannot be used for
# intermediate steps, it should always work.
x = random((9, 5, 6, 2)) + 1j*random((9, 5, 6, 2))
expected = np.fft.irfftn(x, s=s, axes=(0, 1, 2))
out = np.zeros_like(expected)
result = np.fft.irfftn(x, s=s, axes=(0, 1, 2), out=out)
assert result is out
assert_array_equal(result, expected)
@pytest.mark.parametrize(
"dtype",
[np.float32, np.float64, np.complex64, np.complex128])
@pytest.mark.parametrize("order", ["F", 'non-contiguous'])
@pytest.mark.parametrize(
"fft",
[np.fft.fft, np.fft.fft2, np.fft.fftn,
np.fft.ifft, np.fft.ifft2, np.fft.ifftn])
def test_fft_with_order(dtype, order, fft):
# Check that FFT/IFFT produces identical results for C, Fortran and
# non contiguous arrays
rng = np.random.RandomState(42)
X = rng.rand(8, 7, 13).astype(dtype, copy=False)
# See discussion in pull/14178
_tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps
if order == 'F':
Y = np.asfortranarray(X)
else:
# Make a non contiguous array
Y = X[::-1]
X = np.ascontiguousarray(X[::-1])
if fft.__name__.endswith('fft'):
for axis in range(3):
X_res = fft(X, axis=axis)
Y_res = fft(Y, axis=axis)
assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
elif fft.__name__.endswith(('fft2', 'fftn')):
axes = [(0, 1), (1, 2), (0, 2)]
if fft.__name__.endswith('fftn'):
axes.extend([(0,), (1,), (2,), None])
for ax in axes:
X_res = fft(X, axes=ax)
Y_res = fft(Y, axes=ax)
assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
else:
raise ValueError()
@pytest.mark.parametrize("order", ["F", "C"])
@pytest.mark.parametrize("n", [None, 7, 12])
def test_fft_output_order(order, n):
rng = np.random.RandomState(42)
x = rng.rand(10)
x = np.asarray(x, dtype=np.complex64, order=order)
res = np.fft.fft(x, n=n)
assert res.flags.c_contiguous == x.flags.c_contiguous
assert res.flags.f_contiguous == x.flags.f_contiguous
@pytest.mark.skipif(IS_WASM, reason="Cannot start thread")
class TestFFTThreadSafe:
threads = 16
input_shape = (800, 200)
def _test_mtsame(self, func, *args):
def worker(args, q):
q.put(func(*args))
q = queue.Queue()
expected = func(*args)
# Spin off a bunch of threads to call the same function simultaneously
t = [threading.Thread(target=worker, args=(args, q))
for i in range(self.threads)]
[x.start() for x in t]
[x.join() for x in t]
# Make sure all threads returned the correct value
for i in range(self.threads):
assert_array_equal(q.get(timeout=5), expected,
'Function returned wrong value in multithreaded context')
def test_fft(self):
a = np.ones(self.input_shape) * 1+0j
self._test_mtsame(np.fft.fft, a)
def test_ifft(self):
a = np.ones(self.input_shape) * 1+0j
self._test_mtsame(np.fft.ifft, a)
def test_rfft(self):
a = np.ones(self.input_shape)
self._test_mtsame(np.fft.rfft, a)
def test_irfft(self):
a = np.ones(self.input_shape) * 1+0j
self._test_mtsame(np.fft.irfft, a)
def test_irfft_with_n_1_regression():
# Regression test for gh-25661
x = np.arange(10)
np.fft.irfft(x, n=1)
np.fft.hfft(x, n=1)
np.fft.irfft(np.array([0], complex), n=10)
def test_irfft_with_n_large_regression():
# Regression test for gh-25679
x = np.arange(5) * (1 + 1j)
result = np.fft.hfft(x, n=10)
expected = np.array([20., 9.91628173, -11.8819096, 7.1048486,
-6.62459848, 4., -3.37540152, -0.16057669,
1.8819096, -20.86055364])
assert_allclose(result, expected)
@pytest.mark.parametrize("fft", [
np.fft.fft, np.fft.ifft, np.fft.rfft, np.fft.irfft
])
@pytest.mark.parametrize("data", [
np.array([False, True, False]),
np.arange(10, dtype=np.uint8),
np.arange(5, dtype=np.int16),
])
def test_fft_with_integer_or_bool_input(data, fft):
# Regression test for gh-25819
result = fft(data)
float_data = data.astype(np.result_type(data, 1.))
expected = fft(float_data)
assert_array_equal(result, expected)
|