File size: 14,341 Bytes
fe0ad4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"gpuType": "T4"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "QV8xk7HmMX-M",
"outputId": "f92c1174-5e29-43fa-a54a-4dac3bfe6d59"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Cloning into 'diffusers'...\n",
"remote: Enumerating objects: 52829, done.\u001b[K\n",
"remote: Counting objects: 100% (1298/1298), done.\u001b[K\n",
"remote: Compressing objects: 100% (852/852), done.\u001b[K\n",
"remote: Total 52829 (delta 594), reused 966 (delta 418), pack-reused 51531\u001b[K\n",
"Receiving objects: 100% (52829/52829), 38.59 MiB | 24.11 MiB/s, done.\n",
"Resolving deltas: 100% (37517/37517), done.\n",
"/content/diffusers\n",
" Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Checking if build backend supports build_editable ... \u001b[?25l\u001b[?25hdone\n",
" Getting requirements to build editable ... \u001b[?25l\u001b[?25hdone\n",
" Preparing editable metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m143.8/143.8 kB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m92.3/92.3 kB\u001b[0m \u001b[31m7.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m6.3/6.3 MB\u001b[0m \u001b[31m24.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m63.9/63.9 kB\u001b[0m \u001b[31m7.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m170.1/170.1 kB\u001b[0m \u001b[31m21.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m536.6/536.6 kB\u001b[0m \u001b[31m30.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m40.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m42.0/42.0 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m280.0/280.0 kB\u001b[0m \u001b[31m28.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m183.4/183.4 kB\u001b[0m \u001b[31m21.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m62.7/62.7 kB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m74.0/74.0 kB\u001b[0m \u001b[31m10.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.4/1.4 MB\u001b[0m \u001b[31m46.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m44.6/44.6 kB\u001b[0m \u001b[31m5.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m756.0/756.0 kB\u001b[0m \u001b[31m46.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m61.2/61.2 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.2/2.2 MB\u001b[0m \u001b[31m44.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m38.3/38.3 MB\u001b[0m \u001b[31m14.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m15.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m17.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m53.4/53.4 kB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m202.9/202.9 kB\u001b[0m \u001b[31m26.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m54.5/54.5 kB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m257.9/257.9 kB\u001b[0m \u001b[31m30.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Building editable for diffusers (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"ibis-framework 7.1.0 requires pyarrow<15,>=2, but you have pyarrow 15.0.0 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0m"
]
}
],
"source": [
"!git clone https://github.com/Bhavay-2001/diffusers\n",
"%cd diffusers\n",
"!pip install -q -e \".[dev]\""
]
},
{
"cell_type": "code",
"source": [
"!pwd"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "7tNQHp0MascO",
"outputId": "0ac02733-6a0f-484f-fd1b-ee58370e5bd8"
},
"execution_count": 2,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"/content/diffusers\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"import os\n",
"# /content/diffusers/src/diffusers/utils/hub_utils.py\n",
"from diffusers.src.diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card"
],
"metadata": {
"id": "kmQMzKuIXFvS"
},
"execution_count": 3,
"outputs": []
},
{
"cell_type": "code",
"source": [
"def save_model_card(repo_id: str, image_logs: dict =None, base_model: str=None, repo_folder: str=None):\n",
" img_str = \"\"\n",
" for i, log in enumerate(image_logs):\n",
" images = log[\"images\"]\n",
" validation_prompt = log[\"validation_prompt\"]\n",
" validation_image = log[\"validation_image\"]\n",
" validation_image.save(os.path.join(repo_folder, \"image_control.png\"))\n",
" img_str += f\"![img_{i}](./image_{i}.png)\\n\"\n",
"\n",
" model_description = f\"\"\"\n",
" # Textual inversion text2image fine-tuning - {repo_id}\n",
" These are textual inversion adaption weights for {base_model}. You can find some example images in the following. \\n\n",
" {img_str}\n",
" \"\"\"\n",
"\n",
" model_card = load_or_create_model_card(\n",
" repo_id_or_path=repo_id,\n",
" from_training=True,\n",
" license=\"creativeml-openrail-m\",\n",
" base_model=base_model,\n",
" model_description=model_description,\n",
" inference=True,\n",
" )\n",
"\n",
" tags = [\"stable-diffusion-xl\", \"stable-diffusion-xl-diffusers\", \"text-to-image\", \"diffusers\", \"textual_inversion\"]\n",
" model_card = populate_model_card(model_card, tags=tags)\n",
"\n",
" model_card.save(os.path.join(repo_folder, \"README.md\"))"
],
"metadata": {
"id": "LiA0ILIdVp91"
},
"execution_count": 4,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from diffusers.src.diffusers.utils import load_image\n",
"\n",
"images = [\n",
" load_image(\"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/A%20mushroom%20in%20%5BV%5D%20style.png\")\n",
" for _ in range(3)\n",
"]\n",
"\n",
"image_logs = [\n",
" dict(\n",
" images=[image],\n",
" validation_prompt=\"validation_prompt\",\n",
" validation_image=image,\n",
" )\n",
" for image in images\n",
"]\n",
"\n",
"save_model_card(\n",
" repo_id=\"Bhavay-2001/textual-inversion\",\n",
" image_logs=image_logs,\n",
" base_model=\"runwayml/stable-diffusion-v1-5\",\n",
" repo_folder=\".\",\n",
")"
],
"metadata": {
"id": "5UN8yQmYXEYQ"
},
"execution_count": 5,
"outputs": []
},
{
"cell_type": "code",
"source": [
"!cat README.md"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "yzaVaH8qfacW",
"outputId": "fed30f61-1e39-4d5d-93cf-c31e92bb5950"
},
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"---\n",
"license: creativeml-openrail-m\n",
"library_name: diffusers\n",
"tags:\n",
"- stable-diffusion-xl\n",
"- stable-diffusion-xl-diffusers\n",
"- text-to-image\n",
"- diffusers\n",
"- textual_inversion\n",
"inference: true\n",
"base_model: runwayml/stable-diffusion-v1-5\n",
"---\n",
"\n",
"<!-- This model card has been generated automatically according to the information the training script had access to. You\n",
"should probably proofread and complete it, then remove this comment. -->\n",
"\n",
"\n",
" # Textual inversion text2image fine-tuning - Bhavay-2001/textual-inversion\n",
" These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following. \n",
"\n",
" ![img_0](./image_0.png)\n",
"![img_1](./image_1.png)\n",
"![img_2](./image_2.png)\n",
"\n",
" \n",
"\n",
"## Intended uses & limitations\n",
"\n",
"#### How to use\n",
"\n",
"```python\n",
"# TODO: add an example code snippet for running this diffusion pipeline\n",
"```\n",
"\n",
"#### Limitations and bias\n",
"\n",
"[TODO: provide examples of latent issues and potential remediations]\n",
"\n",
"## Training details\n",
"\n",
"[TODO: describe the data used to train the model]"
]
}
]
}
]
} |