ImageNet_general / README.md
BeyondDeepFakeDetection's picture
Upload folder using huggingface_hub
4c0a0c4 verified
metadata
library_name: transformers
license: mit
base_model: gpt2
tags:
  - generated_from_trainer
model-index:
  - name: ImageNet_general_model_v2
    results: []

ImageNet_general_model_v2

This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8684

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.2101 1.0 2776 1.0689
1.0298 2.0 5552 0.9504
0.9494 3.0 8328 0.9029
0.9136 4.0 11104 0.8766
0.8836 5.0 13880 0.8684

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.1.2+cu121
  • Datasets 2.19.1
  • Tokenizers 0.20.3