new_model / README.md
BenjaminKUL's picture
End of training
6469242
|
raw
history blame
7.31 kB
metadata
license: mit
tags:
  - generated_from_trainer
model-index:
  - name: new_model
    results: []

new_model

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0582
  • Answer: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8}
  • Header: {'precision': 0.05263157894736842, 'recall': 0.07692307692307693, 'f1': 0.0625, 'number': 13}
  • Question: {'precision': 0.1, 'recall': 0.15384615384615385, 'f1': 0.12121212121212123, 'number': 13}
  • Overall Precision: 0.0682
  • Overall Recall: 0.0882
  • Overall F1: 0.0769
  • Overall Accuracy: 0.6434

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.1677 3.08 200 0.0239 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} 0.0 0.0 0.0 0.7295
0.0578 6.15 400 0.0251 {'precision': 0.4, 'recall': 0.25, 'f1': 0.3076923076923077, 'number': 8} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} 0.1333 0.0588 0.0816 0.7295
0.0275 9.23 600 0.0291 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} {'precision': 0.05555555555555555, 'recall': 0.07692307692307693, 'f1': 0.06451612903225808, 'number': 13} {'precision': 0.05263157894736842, 'recall': 0.07692307692307693, 'f1': 0.0625, 'number': 13} 0.0526 0.0588 0.0556 0.7008
0.0124 12.31 800 0.0401 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} {'precision': 0.0625, 'recall': 0.07692307692307693, 'f1': 0.06896551724137931, 'number': 13} 0.0303 0.0294 0.0299 0.6352
0.0086 15.38 1000 0.0416 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} {'precision': 0.05263157894736842, 'recall': 0.07692307692307693, 'f1': 0.0625, 'number': 13} {'precision': 0.05263157894736842, 'recall': 0.07692307692307693, 'f1': 0.0625, 'number': 13} 0.0513 0.0588 0.0548 0.6311
0.0045 18.46 1200 0.0447 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} 0.0 0.0 0.0 0.6639
0.0027 21.54 1400 0.0467 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} {'precision': 0.05, 'recall': 0.07692307692307693, 'f1': 0.060606060606060615, 'number': 13} {'precision': 0.09523809523809523, 'recall': 0.15384615384615385, 'f1': 0.11764705882352941, 'number': 13} 0.0667 0.0882 0.0759 0.6639
0.0013 24.62 1600 0.0494 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} {'precision': 0.045454545454545456, 'recall': 0.07692307692307693, 'f1': 0.05714285714285715, 'number': 13} {'precision': 0.08695652173913043, 'recall': 0.15384615384615385, 'f1': 0.1111111111111111, 'number': 13} 0.0612 0.0882 0.0723 0.6434
0.0009 27.69 1800 0.0559 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} {'precision': 0.045454545454545456, 'recall': 0.07692307692307693, 'f1': 0.05714285714285715, 'number': 13} {'precision': 0.08695652173913043, 'recall': 0.15384615384615385, 'f1': 0.1111111111111111, 'number': 13} 0.06 0.0882 0.0714 0.6475
0.0006 30.77 2000 0.0522 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} {'precision': 0.0625, 'recall': 0.07692307692307693, 'f1': 0.06896551724137931, 'number': 13} {'precision': 0.05555555555555555, 'recall': 0.07692307692307693, 'f1': 0.06451612903225808, 'number': 13} 0.0526 0.0588 0.0556 0.6393
0.0004 33.85 2200 0.0557 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} {'precision': 0.05263157894736842, 'recall': 0.07692307692307693, 'f1': 0.0625, 'number': 13} {'precision': 0.1, 'recall': 0.15384615384615385, 'f1': 0.12121212121212123, 'number': 13} 0.0682 0.0882 0.0769 0.6516
0.0005 36.92 2400 0.0582 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} {'precision': 0.05263157894736842, 'recall': 0.07692307692307693, 'f1': 0.0625, 'number': 13} {'precision': 0.1, 'recall': 0.15384615384615385, 'f1': 0.12121212121212123, 'number': 13} 0.0682 0.0882 0.0769 0.6434

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.1.0.dev20230810
  • Datasets 2.14.4
  • Tokenizers 0.11.0