File size: 19,176 Bytes
8bf76cf
859689b
 
8bf76cf
859689b
 
8bf76cf
 
 
 
 
859689b
8bf76cf
 
 
859689b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bf76cf
 
 
 
 
 
 
 
 
 
 
859689b
 
 
 
8bf76cf
 
 
 
 
 
 
 
 
 
 
859689b
 
8bf76cf
859689b
 
 
 
 
8bf76cf
859689b
 
 
 
8bf76cf
 
859689b
 
8bf76cf
859689b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bf76cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
859689b
 
 
 
 
 
 
 
8bf76cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
from torch import nn
import torch
import numpy as np
from copy import deepcopy
import re
import unicodedata
from torch.utils.data import Dataset, DataLoader,TensorDataset, RandomSampler
from sklearn.model_selection import train_test_split
from torch.optim import Adam
from copy import deepcopy
import gc
import torch
import numpy as np
from torchmetrics import functional as fn
import random


# Pre-trained model
class Encoder(nn.Module):
  def __init__(self, layers, freeze_bert, model):
    super(Encoder, self).__init__()

    # Dummy Parameter
    self.dummy_param = nn.Parameter(torch.empty(0))
    
    # Pre-trained model
    self.model = deepcopy(model)

    # Freezing bert parameters
    if freeze_bert:
      for param in self.model.parameters():
        param.requires_grad = freeze_bert

    # Selecting hidden layers of the pre-trained model
    old_model_encoder = self.model.encoder.layer
    new_model_encoder = nn.ModuleList()
    
    for i in layers:
      new_model_encoder.append(old_model_encoder[i])

    self.model.encoder.layer = new_model_encoder
  
  # Feed forward
  def forward(self, **x):
    return self.model(**x)['pooler_output']

# Complete model
class SLR_Classifier(nn.Module):
  def __init__(self, **data):
    super(SLR_Classifier, self).__init__()

    # Dummy Parameter
    self.dummy_param = nn.Parameter(torch.empty(0))

    # Loss function
    # Binary Cross Entropy with logits reduced to mean
    self.loss_fn = nn.BCEWithLogitsLoss(reduction = 'mean',
                                        pos_weight=torch.FloatTensor([data.get("pos_weight",  2.5)]))

    # Pre-trained model
    self.Encoder = Encoder(layers = data.get("bert_layers",  range(12)),
                           freeze_bert = data.get("freeze_bert",  False),
                           model = data.get("model"),
                           )

    # Feature Map Layer
    self.feature_map = nn.Sequential(
            # nn.LayerNorm(self.Encoder.model.config.hidden_size),
            nn.BatchNorm1d(self.Encoder.model.config.hidden_size),
            # nn.Dropout(data.get("drop", 0.5)),
            nn.Linear(self.Encoder.model.config.hidden_size, 200),
            nn.Dropout(data.get("drop", 0.5)),
        )

    # Classifier Layer
    self.classifier = nn.Sequential(
            # nn.LayerNorm(self.Encoder.model.config.hidden_size),
            # nn.Dropout(data.get("drop", 0.5)),
            # nn.BatchNorm1d(self.Encoder.model.config.hidden_size),
            # nn.Dropout(data.get("drop", 0.5)),
            nn.Tanh(),
            nn.Linear(200, 1)
        )

    # Initializing layer parameters
    nn.init.normal_(self.feature_map[1].weight, mean=0, std=0.00001)
    nn.init.zeros_(self.feature_map[1].bias)

  # Feed forward
  def forward(self, input_ids, attention_mask, token_type_ids, labels):
    
    predict = self.Encoder(**{"input_ids":input_ids,
                              "attention_mask":attention_mask,
                              "token_type_ids":token_type_ids})
    feature = self.feature_map(predict)
    logit = self.classifier(feature)

    predict = torch.sigmoid(logit)
    
    # Loss function 
    loss = self.loss_fn(logit.to(torch.float), labels.to(torch.float).unsqueeze(1))

    return [loss, [feature, logit], predict]

# Undesirable patterns within texts
patterns = {
    'CONCLUSIONS AND IMPLICATIONS':'',
    'BACKGROUND AND PURPOSE':'',
    'EXPERIMENTAL APPROACH':'',
    'KEY RESULTS AEA':'',
    '©':'',
    '®':'',
    'μ':'',
    '(C)':'',
    'OBJECTIVE:':'',
    'MATERIALS AND METHODS:':'',
    'SIGNIFICANCE:':'',
    'BACKGROUND:':'',
    'RESULTS:':'',
    'METHODS:':'',
    'CONCLUSIONS:':'',
    'AIM:':'',
    'STUDY DESIGN:':'',
    'CLINICAL RELEVANCE:':'',
    'CONCLUSION:':'',
    'HYPOTHESIS:':'',
    'CLINICAL RELEVANCE:':'',
    'Questions/Purposes:':'',
    'Introduction:':'',
    'PURPOSE:':'',
    'PATIENTS AND METHODS:':'',
    'FINDINGS:':'',
    'INTERPRETATIONS:':'',
    'FUNDING:':'',
    'PROGRESS:':'',
    'CONTEXT:':'',
    'MEASURES:':'',
    'DESIGN:':'',
    'BACKGROUND AND OBJECTIVES:':'',
    '<p>':'',
    '</p>':'',
    '<<ETX>>':'',
    '+/-':'',
    '\(.+\)':'',
    '\[.+\]':'',
    ' \d ':'',
    '<':'',
    '>':'',
    '- ':'',
    ' +':' ',
    ', ,':',',
    ',,':',',
    '%':' percent',
    'per cent':' percent'
    }
 
patterns = {x.lower():y for x,y in patterns.items()}


LABEL_MAP = {'negative': 0,
             'not included':0,
             '0':0,
             0:0,
             'excluded':0,
             'positive': 1,
             'included':1,
             '1':1,
             1:1,
             }

class SLR_DataSet(Dataset):
  def __init__(self,treat_text =None, **args):
    self.tokenizer = args.get('tokenizer')
    self.data = args.get('data')
    self.max_seq_length = args.get("max_seq_length", 512)
    self.INPUT_NAME = args.get("input", 'x')
    self.LABEL_NAME = args.get("output", 'y')
    self.treat_text = treat_text

  # Tokenizing and processing text
  def encode_text(self, example):
    comment_text = example[self.INPUT_NAME]
    if self.treat_text:
      comment_text = self.treat_text(comment_text)
    
    try:
      labels = LABEL_MAP[example[self.LABEL_NAME].lower()]
    except:
      labels = -1

    encoding = self.tokenizer.encode_plus(
      (comment_text, "It is great text"),
      add_special_tokens=True,
      max_length=self.max_seq_length,
      return_token_type_ids=True,
      padding="max_length",
      truncation=True,
      return_attention_mask=True,
      return_tensors='pt',
    )

    
    return tuple((
      encoding["input_ids"].flatten(),
      encoding["attention_mask"].flatten(),
      encoding["token_type_ids"].flatten(),
      torch.tensor([torch.tensor(labels).to(int)])
    ))
  

  def __len__(self):
    return len(self.data)

  # Returning data
  def __getitem__(self, index: int):
    # print(index)
    data_row = self.data.reset_index().iloc[index]
    temp_data =  self.encode_text(data_row)
    return temp_data


class Learner(nn.Module):

    def __init__(self, **args):
        """
        :param args:
        """
        super(Learner, self).__init__()
        
        self.inner_print = args.get('inner_print')
        self.inner_batch_size = args.get('inner_batch_size')
        self.outer_update_lr  = args.get('outer_update_lr')
        self.inner_update_lr  = args.get('inner_update_lr')
        self.inner_update_step = args.get('inner_update_step')
        self.inner_update_step_eval = args.get('inner_update_step_eval')
        self.model = args.get('model')
        self.device = args.get('device')
        
        # Outer optimizer
        self.outer_optimizer = Adam(self.model.parameters(), lr=self.outer_update_lr)
        self.model.train()

    def forward(self, batch_tasks, training = True, valid_train = True):
        """
        batch = [(support TensorDataset, query TensorDataset),
                 (support TensorDataset, query TensorDataset),
                 (support TensorDataset, query TensorDataset),
                 (support TensorDataset, query TensorDataset)]
        
        # support = TensorDataset(all_input_ids, all_attention_mask, all_segment_ids, all_label_ids)
        """
        task_accs = []
        task_f1 = []
        task_recall = []
        sum_gradients = []
        num_task = len(batch_tasks)
        num_inner_update_step = self.inner_update_step if training else self.inner_update_step_eval

        # Outer loop tasks 
        for task_id, task in enumerate(batch_tasks):
            support = task[0]
            query   = task[1]
            name   = task[2]
            
            # Copying model
            fast_model = deepcopy(self.model)
            fast_model.to(self.device)
            
            # Inner trainer optimizer
            inner_optimizer = Adam(fast_model.parameters(), lr=self.inner_update_lr)
            
            # Creating training data loaders
            if len(support) % self.inner_batch_size == 1 :
              support_dataloader = DataLoader(support, sampler=RandomSampler(support),
                                              batch_size=self.inner_batch_size,
                                              drop_last=True)
            else:
              support_dataloader = DataLoader(support, sampler=RandomSampler(support),
                                              batch_size=self.inner_batch_size,
                                              drop_last=False)
                            
            # steps_per_epoch=len(support) // self.inner_batch_size
            # total_training_steps = steps_per_epoch * 5
            # warmup_steps = total_training_steps // 3
            #            

            # scheduler = get_linear_schedule_with_warmup(
            #            inner_optimizer, 
            #           num_warmup_steps=warmup_steps,
            #           num_training_steps=total_training_steps
            #           )

            fast_model.train()            

            # Inner loop training epoch (support set)
            if valid_train:
              print('----Task',task_id,":", name, '----')

            for i in range(0, num_inner_update_step):
                all_loss = []

                # Inner loop training batch (support set)
                for inner_step, batch in enumerate(support_dataloader):
                    batch = tuple(t.to(self.device) for t in batch)
                    input_ids, attention_mask, token_type_ids, label_id = batch

                    # Feed Foward
                    loss, _, _ = fast_model(input_ids, attention_mask, token_type_ids=token_type_ids, labels = label_id)
                                  
                    # Computing gradients
                    loss.backward()
                    # torch.nn.utils.clip_grad_norm_(fast_model.parameters(), max_norm=1)
                    
                    # Updating inner training parameters
                    inner_optimizer.step()
                    inner_optimizer.zero_grad()
                    
                    # Appending losses
                    all_loss.append(loss.item())
                    
                    del batch, input_ids, attention_mask, label_id
                    torch.cuda.empty_cache()
                
                if valid_train:
                  if (i+1) % self.inner_print == 0:
                      print("Inner Loss: ", np.mean(all_loss))

            fast_model.to(torch.device('cpu'))
            
            # Inner training phase weights
            if training:
                meta_weights = list(self.model.parameters())
                fast_weights = list(fast_model.parameters())

                # Appending gradients
                gradients = []
                for i, (meta_params, fast_params) in enumerate(zip(meta_weights, fast_weights)):
                    gradient = meta_params - fast_params
                    if task_id == 0:
                        sum_gradients.append(gradient)
                    else:
                        sum_gradients[i] += gradient


            # Inner test (query set)
            fast_model.to(self.device)
            fast_model.eval()

            if valid_train:
              # Inner test (query set)
              fast_model.to(self.device)
              fast_model.eval()
              
            with torch.no_grad():
                # Data loader
                query_dataloader = DataLoader(query, sampler=None, batch_size=len(query))
                query_batch = iter(query_dataloader).next()
                query_batch = tuple(t.to(self.device) for t in query_batch)
                q_input_ids, q_attention_mask, q_token_type_ids, q_label_id = query_batch
                
                # Feedfoward
                _, _, pre_label_id = fast_model(q_input_ids, q_attention_mask, q_token_type_ids, labels = q_label_id)

                # Predictions
                pre_label_id = pre_label_id.detach().cpu().squeeze()
                # Labels
                q_label_id = q_label_id.detach().cpu()

                # Calculating metrics
                acc = fn.accuracy(pre_label_id, q_label_id).item()
                recall = fn.recall(pre_label_id, q_label_id).item(),
                f1 = fn.f1_score(pre_label_id, q_label_id).item()

                # appending metrics
                task_accs.append(acc)
                task_f1.append(f1)
                task_recall.append(recall)
            
                fast_model.to(torch.device('cpu'))

            del fast_model, inner_optimizer
            torch.cuda.empty_cache()
        
        print("\n")
        print("f1:",np.mean(task_f1))
        print("recall:",np.mean(task_recall))

        # Updating outer training parameters
        if training:
            # Mean of gradients
            for i in range(0,len(sum_gradients)):
                sum_gradients[i] = sum_gradients[i] / float(num_task)

            # Indexing parameters to model
            for i, params in enumerate(self.model.parameters()):
                params.grad = sum_gradients[i]

            # Updating parameters
            self.outer_optimizer.step()
            self.outer_optimizer.zero_grad()
            
            del sum_gradients
            gc.collect()
            torch.cuda.empty_cache()

        if valid_train:
          return np.mean(task_accs)
        else:
          return np.array(0)



# Creating Meta Tasks
class MetaTask(Dataset):
    def __init__(self, examples, num_task, k_support, k_query,
                 tokenizer, training=True, max_seq_length=512,
                 treat_text =None, **args):
        """
        :param samples: list of samples
        :param num_task: number of training tasks.
        :param k_support: number of classes support samples per task
        :param k_query: number of classes query sample per task
        """
        self.examples = examples
        
        self.num_task =  num_task
        self.k_support = k_support
        self.k_query = k_query
        self.tokenizer = tokenizer
        self.max_seq_length = max_seq_length
        self.treat_text = treat_text
        
        # Randomly generating tasks
        self.create_batch(self.num_task, training)
        
    # Creating batch
    def create_batch(self, num_task, training):
        self.supports = []  # support set
        self.queries = []  # query set
        self.task_names = [] # Name of task
        self.supports_indexs = [] # index of supports
        self.queries_indexs = [] # index of queries
        self.num_task=num_task
        
        # Available tasks
        domains = self.examples['domain'].unique()

        # If not training, create all tasks
        if not(training):
          self.task_names = domains
          num_task = len(self.task_names)
          self.num_task=num_task

        
        for b in range(num_task):  # For each task,
            total_per_class = self.k_support + self.k_query 
            task_size = 2*self.k_support + 2*self.k_query 

            # Select a task at random
            if training:  
              domain = random.choice(domains)
              self.task_names.append(domain)
            else:
              domain = self.task_names[b]

            # Task data
            domainExamples = self.examples[self.examples['domain'] == domain]

            # Minimal label quantity
            min_per_class = min(domainExamples['label'].value_counts())

            if total_per_class > min_per_class:
              total_per_class = min_per_class
            
            # Select k_support + k_query task examples
            # Sample (n) from each label(class)
            selected_examples = domainExamples.groupby("label").sample(total_per_class, replace = False)

            # Split data into support (training) and query (testing) sets
            s, q = train_test_split(selected_examples,
                                    stratify= selected_examples["label"],
                                    test_size= 2*self.k_query/task_size,
                                    shuffle=True)
            
            # Permutating data
            s = s.sample(frac=1)  
            q = q.sample(frac=1) 

            # Appending indexes
            if not(training):
              self.supports_indexs.append(s.index)
              self.queries_indexs.append(q.index)

            # Creating list of support (training) and query (testing) tasks
            self.supports.append(s.to_dict('records'))
            self.queries.append(q.to_dict('records'))

    # Creating task tensors
    def create_feature_set(self, examples):
        all_input_ids      = torch.empty(len(examples), self.max_seq_length, dtype = torch.long)
        all_attention_mask = torch.empty(len(examples), self.max_seq_length, dtype = torch.long)
        all_token_type_ids = torch.empty(len(examples), self.max_seq_length, dtype = torch.long)
        all_label_ids      = torch.empty(len(examples), dtype = torch.long)

        for _id, e in enumerate(examples):
          all_input_ids[_id], all_attention_mask[_id], all_token_type_ids[_id], all_label_ids[_id] = self.encode_text(e)

        return TensorDataset(
            all_input_ids,
            all_attention_mask,
            all_token_type_ids,
            all_label_ids
        ) 
      
    # Data encoding
    def encode_text(self, example):
      comment_text = example["text"]

      if self.treat_text:
        comment_text = self.treat_text(comment_text)
      
      labels = LABEL_MAP[example["label"]]

      encoding = self.tokenizer.encode_plus(
        (comment_text, "It is a great text."),
        add_special_tokens=True,
        max_length=self.max_seq_length,
        return_token_type_ids=True,
        padding="max_length",
        truncation=True,
        return_attention_mask=True,
        return_tensors='pt',
      )

      return tuple((
        encoding["input_ids"].flatten(),
        encoding["attention_mask"].flatten(),
        encoding["token_type_ids"].flatten(),
        torch.tensor([torch.tensor(labels).to(int)])
      ))

    # Returns data upon calling
    def __getitem__(self, index):
        support_set = self.create_feature_set(self.supports[index])
        query_set   = self.create_feature_set(self.queries[index])
        name        = self.task_names[index]
        return support_set, query_set, name

    def __len__(self):
        return self.num_task


class treat_text:
  def __init__(self, patterns):
    self.patterns = patterns

  def __call__(self,text):
    text = unicodedata.normalize("NFKD",str(text))
    text = multiple_replace(self.patterns,text.lower())
    text = re.sub('(\(.+\))|(\[.+\])|( \d )|(<)|(>)|(- )','', text)
    text = re.sub('( +)',' ', text)
    text = re.sub('(, ,)|(,,)',',', text)
    text = re.sub('(%)|(per cent)',' percent', text)
    return text


# Regex multiple replace function
def multiple_replace(dict, text):

  # Building regex from dict keys
  regex = re.compile("(%s)" % "|".join(map(re.escape, dict.keys())))

  # Substitution
  return regex.sub(lambda mo: dict[mo.string[mo.start():mo.end()]], text)