File size: 12,560 Bytes
036acda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
from torch.utils.data import DataLoader
from sentence_transformers import losses, util, models
from sentence_transformers import SentencesDataset, LoggingHandler, SentenceTransformer, evaluation
from sentence_transformers.readers import InputExample
import logging
from datetime import datetime
import os
from shutil import copyfile
import sys
import math
import gzip
import random
import tqdm
from transformers import AutoTokenizer, AutoModel, BertModel
import transformers
import torch
from SPARTA import SPARTA
import json
import numpy as np
from torch.cuda.amp import autocast
import os
from shutil import copyfile
import datetime
from collections import defaultdict
from scipy.sparse import csc_matrix, csr_matrix

random.seed(42)

scaler = torch.cuda.amp.GradScaler()

#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    level=logging.INFO,
                    handlers=[LoggingHandler()])
#### /print debug information to stdout

# Fill GPU
fill_gpu = torch.eye(85000, dtype=torch.float, device='cuda')
del fill_gpu

device = 'cuda' if torch.cuda.is_available() else 'cpu'

model_name = sys.argv[1]
model = SPARTA(model_name, device)

model_save_path = "output/msmarco-{}-{}".format(model_name.rstrip("/").split("/")[-1], datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
model.tokenizer.save_pretrained(model_save_path)


##Distil setting
if 'distil' in model_name:
    batch_size, num_negatives = 4, 35
else:
    batch_size, num_negatives = 3, 20

logging.info(f"batch_size: {batch_size}")
logging.info(f"num_neg: {num_negatives}")


# Write self to path
os.makedirs(model_save_path, exist_ok=True)

train_script_path = os.path.join(model_save_path, 'train_script.py')
copyfile(__file__, train_script_path)
with open(train_script_path, 'a') as fOut:
    fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))


########################
corpus = {}
train_queries = {}





#### Read dev file
logging.info("Create dev dataset")
dev_corpus_max_size = 100*1000

dev_queries_file = '../data/queries.dev.small.tsv'
needed_pids = set()
needed_qids = set()
dev_qids = set()

dev_queries = {}
dev_corpus = {}
dev_rel_docs = {}

with open(dev_queries_file) as fIn:
    for line in fIn:
        qid, query = line.strip().split("\t")
        dev_qids.add(qid)

with open('../data/qrels.dev.tsv') as fIn:
    for line in fIn:
        qid, _, pid, _ = line.strip().split('\t')

        if qid not in dev_qids:
            continue

        if qid not in dev_rel_docs:
            dev_rel_docs[qid] = set()
        dev_rel_docs[qid].add(pid)

        needed_pids.add(pid)
        needed_qids.add(qid)

with open(dev_queries_file) as fIn:
    for line in fIn:
        qid, query = line.strip().split("\t")
        if qid in needed_qids:
            dev_queries[qid] = query

with gzip.open('../data/collection-rnd.tsv.gz', 'rt') as fIn:
    for line in fIn:
        pid, passage = line.strip().split("\t")
        if pid in needed_pids or dev_corpus_max_size <= 0 or len(dev_corpus) <= dev_corpus_max_size:
            dev_corpus[pid] = passage

dev_corpus_pids = list(dev_corpus.keys())
dev_corpus = [dev_corpus[pid] for pid in dev_corpus_pids]

########### Eval functions

def compute_passage_emb(passages):
    sparse_embeddings = []
    bert_input_emb = model.bert_model.embeddings.word_embeddings(torch.tensor(list(range(0, len(model.tokenizer))), device=device))
    sparse_vec_size = 2000

    # Set Special tokens [CLS] [MASK] etc. to zero
    for special_id in model.tokenizer.all_special_ids:
        bert_input_emb[special_id] = 0 * bert_input_emb[special_id]

    with torch.no_grad():
        tokens = model.tokenizer(passages, padding=True, truncation=True, return_tensors='pt', max_length=500).to(device)
        passage_embeddings = model.bert_model(**tokens).last_hidden_state
        for passage_emb in passage_embeddings:
            scores = torch.matmul(bert_input_emb, passage_emb.transpose(0, 1))
            max_scores = torch.max(scores, dim=-1).values
            relu_scores = torch.relu(max_scores) #Eq. 5
            final_scores = torch.log(relu_scores + 1)  # Eq. 6, final score

            top_results = torch.topk(final_scores, k=sparse_vec_size, sorted=True)
            passage_emb = defaultdict(float)
            for score, idx in zip(top_results[0].cpu().tolist(), top_results[1].cpu().tolist()):
                if score > 0:
                    passage_emb[idx] = score
                else:
                    break

            sparse_embeddings.append(passage_emb)

    return sparse_embeddings

def evaluate_msmarco():
    passage_embs_sorted = []
    batch_size = 32

    length_sorted_idx = np.argsort([-len(pas) for pas in dev_corpus])
    dev_corpus_sorted = [dev_corpus[idx] for idx in length_sorted_idx]

    for start_idx in tqdm.trange(0, len(dev_corpus_sorted), batch_size, desc='encode corpus'):
        passage_embs_sorted.extend(compute_passage_emb(dev_corpus_sorted[start_idx:start_idx + batch_size]))

    passage_embs = [passage_embs_sorted[idx] for idx in np.argsort(length_sorted_idx)]

    logging.info("Create sparse matrix")
    row = []
    col = []
    values = []
    for pid, emb in enumerate(passage_embs):
        for tid, score in emb.items():
            row.append(tid)
            col.append(pid)
            values.append(score)

    sparse = csr_matrix((values, (row, col)), shape=(len(model.tokenizer), len(passage_embs)), dtype=np.float)
    logging.info("Scores: {}".format(sparse.shape))

    mrr = []
    k = 10
    for qid, question in tqdm.tqdm(dev_queries.items(), desc="score"):
        token_ids = model.tokenizer(question, add_special_tokens=False)['input_ids']

        # Get the candidate passages
        scores = np.asarray(sparse[token_ids, :].sum(axis=0)).squeeze(0)
        top_k_ind = np.argpartition(scores, -k)[-k:]
        hits = sorted([(dev_corpus_pids[pid], scores[pid]) for pid in top_k_ind], key=lambda x: x[1], reverse=True)

        mrr_score = 0
        for rank, hit in enumerate(hits[0:10]):
            pid = hit[0]
            if pid in dev_rel_docs[qid]:
                mrr_score = 1 / (rank + 1)
                break
        mrr.append(mrr_score)

    assert len(mrr) == len(dev_queries)
    mrr = np.mean(mrr)
    logging.info("MRR@10: {:.4f}".format(mrr))
    return mrr


best_score = 0 #evaluate_msmarco()

#################


#### Read train file

with gzip.open('../data/collection.tsv.gz', 'rt') as fIn:
    for line in fIn:
        pid, passage = line.strip().split("\t")
        corpus[pid] = passage


with open('../data/queries.train.tsv', 'r') as fIn:
    for line in fIn:
        qid, query = line.strip().split("\t")
        train_queries[qid] = {'query': query,
                              'pos': set(),
                              'soft-pos': set(),
                              'neg': set()}



#Read qrels file for relevant positives per query
with open('../data/qrels.train.tsv') as fIn:
    for line in fIn:
        qid, _, pid, _ = line.strip().split()
        train_queries[qid]['pos'].add(pid)


logging.info("Clean train queries")
deleted_queries = 0
for qid in list(train_queries.keys()):
    if len(train_queries[qid]['pos']) == 0:
        deleted_queries += 1
        del train_queries[qid]
        continue

logging.info("Deleted queries pos-empty: {}".format(deleted_queries))

for hard_neg_file in ['../data/hard-negatives-all.jsonl.gz']: #'../data/hard-negatives-ann-roberta.jsonl.gz']: #['../data/hard-negatives-ann-msmarco-distilbert-base-v2.jsonl.gz', '../data/hard-negatives-ann.jsonl.gz', '../data/hard-negatives-ann-no_idnt.jsonl.gz', '../data/hard-negatives-all.jsonl.gz']:
    logging.info("Read hard negatives: "+hard_neg_file)
    with gzip.open(hard_neg_file, 'rt') as fIn:
        try:
            for line in fIn:
                try:
                    data = json.loads(line)
                except:
                    continue
                qid = data['qid']

                if qid in train_queries:
                    neg_added = 0
                    max_neg_added = 100

                    hits = sorted(data['hits'], key=lambda x: x['score'] if 'score' in x else x['bm25-score'], reverse=True)
                    for hit in hits:
                        pid = hit['corpus_id'] if 'corpus_id' in hit else hit['pid']

                        if pid in train_queries[qid]['pos']:    #Skip entries we have as positives
                            continue

                        if hit['bert-score'] < 0.1 and neg_added < max_neg_added:
                            train_queries[qid]['neg'].add(pid)
                            neg_added += 1
                        elif hit['bert-score'] > 0.9:
                            train_queries[qid]['soft-pos'].add(pid)
        except:
            pass


logging.info("Clean train queries with empty neg set")
deleted_queries = 0
for qid in list(train_queries.keys()):
    if len(train_queries[qid]['neg']) == 0:
        deleted_queries += 1
        del train_queries[qid]
        continue

logging.info("Deleted queries neg empty: {}".format(deleted_queries))

train_queries = list(train_queries.values())
for idx in range(len(train_queries)):
    train_queries[idx]['pos'] = list(train_queries[idx]['pos'])
    train_queries[idx]['neg'] = list(train_queries[idx]['neg'])
    train_queries[idx]['soft-pos'] = list(train_queries[idx]['soft-pos'])



###########################################




####
# Prepare optimizers
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
    {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
    {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]



grad_acc_steps, lr = 1, 2e-5
#grad_acc_steps, lr = 16, 2e-5


num_epochs = 1
optimizer = transformers.AdamW(model.parameters(), lr=lr, eps=1e-6)   #optimizer_grouped_parameters
t_total = math.ceil(len(train_queries)/batch_size*num_epochs)
num_warmup_steps = int(t_total/grad_acc_steps * 0.1)    #10% for warm up
scheduler = transformers.get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=t_total)
loss_fct = torch.nn.CrossEntropyLoss()
max_grad_norm = 1


for epoch in tqdm.trange(num_epochs, desc='Epochs'):
    random.shuffle(train_queries)
    idx = 0
    for start_idx in tqdm.trange(0, len(train_queries), batch_size):
        idx += 1
        if (idx) % 5000 == 0:
            score = evaluate_msmarco()
            if score > best_score:
                best_score = score
                model.bert_model.save_pretrained(model_save_path)
                logging.info(f"Save to {model_save_path}")

        batch = train_queries[start_idx:start_idx+batch_size]
        queries = [b['query'] for b in batch]

        #First the positives
        passages = [corpus[random.choice(b['pos'])] for b in batch]

        #Then the negatives
        for b in batch:
            for pid in random.sample(b['neg'], k=min(len(b['neg']), num_negatives)):
                passages.append(corpus[pid])


        label = torch.tensor(list(range(len(batch))), device=device)

        ##FP16
        with autocast():
            final_scores = model(queries, passages) 
            final_scores = 5*final_scores
            loss_value = loss_fct(final_scores, label) / grad_acc_steps

        scaler.scale(loss_value).backward()
        if (idx + 1) % grad_acc_steps == 0:
            scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
            scaler.step(optimizer)
            scaler.update()
            model.zero_grad()
            scheduler.step()


        """
        #Normal FP32 with grad acc
        final_scores = model(query, passages)
        #Compute loss
        loss_value = loss_fct(final_scores, label)
        if grad_acc_steps > 1:
            loss_value /= grad_acc_steps
        loss_value.backward()
    
        if (idx+1) % grad_acc_steps == 0:
            torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
            optimizer.step()
            model.zero_grad()
            scheduler.step()
        """


logging.info("Final eval:")
evaluate_msmarco()

# Script was called via:
#python train_sparta_msmarco.py distilbert-base-uncased no weight decay, 5* score scaling