|
--- |
|
language: |
|
- mn |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: mongolian-ner-test-xlm-roberta-large-ner-hrl |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mongolian-ner-test-xlm-roberta-large-ner-hrl |
|
|
|
This model is a fine-tuned version of [bayartsogt/albert-mongolian](https://huggingface.co/bayartsogt/albert-mongolian) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5337 |
|
- Precision: 0.3060 |
|
- Recall: 0.1406 |
|
- F1: 0.1927 |
|
- Accuracy: 0.8591 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.6123 | 1.0 | 477 | 0.5570 | 0.2422 | 0.0999 | 0.1414 | 0.8536 | |
|
| 0.5411 | 2.0 | 954 | 0.5407 | 0.2914 | 0.1294 | 0.1792 | 0.8572 | |
|
| 0.5288 | 3.0 | 1431 | 0.5394 | 0.2944 | 0.1309 | 0.1812 | 0.8576 | |
|
| 0.5212 | 4.0 | 1908 | 0.5346 | 0.3015 | 0.1324 | 0.1840 | 0.8581 | |
|
| 0.5156 | 5.0 | 2385 | 0.5298 | 0.3131 | 0.1394 | 0.1929 | 0.8595 | |
|
| 0.5103 | 6.0 | 2862 | 0.5301 | 0.3086 | 0.1419 | 0.1944 | 0.8595 | |
|
| 0.5041 | 7.0 | 3339 | 0.5318 | 0.3083 | 0.1411 | 0.1936 | 0.8592 | |
|
| 0.4981 | 8.0 | 3816 | 0.5308 | 0.3117 | 0.1421 | 0.1952 | 0.8595 | |
|
| 0.4931 | 9.0 | 4293 | 0.5329 | 0.3062 | 0.1400 | 0.1922 | 0.8592 | |
|
| 0.4885 | 10.0 | 4770 | 0.5337 | 0.3060 | 0.1406 | 0.1927 | 0.8591 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|