Baljinnyam's picture
update model card README.md
f494784
metadata
language:
  - mn
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: mongolian-ner-test-xlm-roberta-large-ner-hrl
    results: []

mongolian-ner-test-xlm-roberta-large-ner-hrl

This model is a fine-tuned version of bayartsogt/albert-mongolian on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5337
  • Precision: 0.3060
  • Recall: 0.1406
  • F1: 0.1927
  • Accuracy: 0.8591

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.6123 1.0 477 0.5570 0.2422 0.0999 0.1414 0.8536
0.5411 2.0 954 0.5407 0.2914 0.1294 0.1792 0.8572
0.5288 3.0 1431 0.5394 0.2944 0.1309 0.1812 0.8576
0.5212 4.0 1908 0.5346 0.3015 0.1324 0.1840 0.8581
0.5156 5.0 2385 0.5298 0.3131 0.1394 0.1929 0.8595
0.5103 6.0 2862 0.5301 0.3086 0.1419 0.1944 0.8595
0.5041 7.0 3339 0.5318 0.3083 0.1411 0.1936 0.8592
0.4981 8.0 3816 0.5308 0.3117 0.1421 0.1952 0.8595
0.4931 9.0 4293 0.5329 0.3062 0.1400 0.1922 0.8592
0.4885 10.0 4770 0.5337 0.3060 0.1406 0.1927 0.8591

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3