File size: 5,923 Bytes
a3fa0c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import json
from bs4 import BeautifulSoup
import re
from tqdm import tqdm # Import tqdm for progress tracking
import sys
import question_categorizer as qc
import numpy as np
from question_categorizer import TextClassificationModel
qc_model = qc.TextClassificationModel.load_model("models/categorizer")
categories = ['Geography', 'Religion', 'Philosophy', 'Trash','Mythology', 'Literature','Science', 'Social Science', 'History', 'Current Events', 'Fine Arts']
def remove_newline(string):
return re.sub('\n+', ' ', string)
def clean_text(text, answer):
# Remove HTML tags
text = re.sub(r'<.*?>', '', text)
#text = re.sub(r'?','.',text)
text = text.replace('?','.')
# Clean the text further
text = re.sub(r'[^a-zA-Z.\s-]', '', text)
# Remove answer from text
try:
# Preprocess the answer to replace underscores with spaces
processed_answer = answer.replace('_', ' ')
# Remove parentheses from the processed answer
processed_answer = re.sub(r'\([^)]*\)', '', processed_answer)
# Replace all instances of the processed answer with an empty string, ignoring case
text = re.sub(re.escape(processed_answer), '', text, flags=re.IGNORECASE)
except Exception as e:
print("An error occurred during text cleaning:", e)
print("Text:", text)
print("Answer:", answer)
# Remove extra whitespaces
text = re.sub(r'\s+', ' ', text)
return text.strip()
def process_data():
#with open("data/JEOPARDY_QUESTIONS1.json", "r") as f:
# jeopardy_data = json.load(f)
jeopardy_data = []
wiki_files = [
]
question_files = [
"qadata.json"]
wiki_data = []
question_data = []
for file_path in wiki_files:
with open('data/' + file_path, "r") as f:
wiki_data.extend(json.load(f))
for file_path in question_files:
with open('data/' + file_path, "r") as f:
question_data.extend(json.load(f))
#print(question_data)
with open("data/training_data.json", "w") as f:
training_data = []
# Process Jeopardy data
print("Processing Jeopardy data...")
for entry in tqdm(jeopardy_data):
question = entry["question"]
answer = str(entry["answer"])
# Preprocess the text
soup = BeautifulSoup(question, 'html.parser')
clean_question = ''.join(soup.findAll(text=True, recursive=False))
question_category = []
# Get category from qc_model
prediction = qc_model.predict(question)
predictions = np.argwhere(prediction >= 1.5)[1]
for prediction_ind in predictions:
# Store data in array with respective index
question_category.append(categories[prediction_ind])
question_category.append('ALL')
training_entry = {
"text": clean_question,
"answer": answer,#,
# Mohit, put categorizing code here
"category": question_category
}
training_data.append(training_entry)
# Process Wikipedia data
print("Processing Wikipedia data...")
for entry in tqdm(wiki_data):
page = str(entry["page"])
text = entry["text"]
if(text == ""):
continue
text = remove_newline(text)
text = clean_text(text, page)
question_category = []
# Get category from qc_model
prediction = qc_model.predict(text)
predictions = np.argwhere(prediction >= 1.5)[1]
for prediction_ind in predictions:
# Store data in array with respective index
question_category.append(categories[prediction_ind])
question_category.append('ALL')
training_entry = {
"text": text,
"answer": page,
# Mohit, put categorizing code here
"category": question_category
}
training_data.append(training_entry)
print("Processing Misc data...")
for entry in tqdm(question_data):
answer = str(entry["answer"])
text = entry["text"]
if(text == "" or answer == ""):
continue
text = remove_newline(text)
text = clean_text(text, answer)
question_category = []
# Get category from qc_model
try:
prediction = qc_model.predict(text)
predictions = np.argwhere(prediction >= 1.5)[1]
except:
print("answer: " + str(answer))
print("text:" + str(text))
continue
for prediction_ind in predictions:
# Store data in array with respective index
question_category.append(categories[prediction_ind])
question_category.append('ALL')
training_entry = {
"text": text,
"answer": answer,
# Mohit, put categorizing code here
"category": question_category
}
training_data.append(training_entry)
json.dump(training_data, f, indent=4)
process_data()
|