File size: 9,446 Bytes
a3fa0c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import json
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.stem import PorterStemmer, WordNetLemmatizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import os
import math
import pickle
import joblib
import multiprocessing
from concurrent.futures import ProcessPoolExecutor
from tqdm import tqdm # Import tqdm for progress tracking
from collections import defaultdict
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
nltk.download('maxent_ne_chunker')
nltk.download('words')
nltk.download('wordnet')
nltk.download('omw-1.4')
# Helper function to map NLTK POS tags to WordNet POS tags
def get_wordnet_pos(treebank_tag):
if treebank_tag.startswith('J'):
return nltk.corpus.wordnet.ADJ
elif treebank_tag.startswith('V'):
return nltk.corpus.wordnet.VERB
elif treebank_tag.startswith('N'):
return nltk.corpus.wordnet.NOUN
elif treebank_tag.startswith('R'):
return nltk.corpus.wordnet.ADV
else:
return nltk.corpus.wordnet.NOUN
class NLPModel:
def __init__(self): # Initialize the model with necessary parameters
# Initialize model components (preprocessing, training, etc.)
#self.model
self.tfidf = TfidfVectorizer(tokenizer=self.tokenize, lowercase=False)
self.training_tfidf = None
#self.manager = multiprocessing.Manager()
self.flattened_sentences = []
self.training_tagged = []
self.answers = []
def tokenize(self, text):
# Your tokenization logic goes here
return text # No tokenization needed, return the input as-is
def preprocess_text(self, text):
# Tokenization
sentences = sent_tokenize(text)
preprocessed_sentences = []
batch_size = 50 # Adjust the batch size based on your system's capabilities
for i in range(0, len(sentences), batch_size):
batch_sentences = sentences[i:i + batch_size]
batch_words = [word_tokenize(sentence) for sentence in batch_sentences]
# Filtering Stop Words
stop_words = set(stopwords.words('english'))
filtered_words = [[word for word in words if word.lower() not in stop_words] for words in batch_words]
# Stemming
stemmer = PorterStemmer()
stemmed_words = [[stemmer.stem(word) for word in words] for words in filtered_words]
# Tagging Parts of Speech
pos_tags = [nltk.pos_tag(words) for words in stemmed_words]
# Lemmatizing
lemmatizer = WordNetLemmatizer()
lemmatized_words = [[lemmatizer.lemmatize(word, pos=get_wordnet_pos(tag)) for word, tag in pos] for pos in pos_tags]
preprocessed_sentences.extend(lemmatized_words)
return preprocessed_sentences
def process_data(self, data_json):
#print("Processing data in parallel...")
batch_size = 10000 # Experiment with different batch sizes
num_processes = int(multiprocessing.cpu_count()/2) # Utilize more processes
batches = [data_json[i:i + batch_size] for i in range(0, len(data_json), batch_size)]
#print('batches')
#training_tagged = [] # Initialize or clear self.training_tagged
sentence_answers = []
with ProcessPoolExecutor(max_workers=num_processes) as executor:
results = list(tqdm(executor.map(self.process_data_batch, batches), total=len(batches)))
#with multiprocessing.Pool() as pool:
#results = []
#for batch in batches:
#results.append(self.process_data_batch(batch))
for batch_result in results:
for result in batch_result:
sentence_answers.extend(result)
#print("here")
# Create a dictionary to group sentences by answer
answer_groups = defaultdict(list)
# Iterate through each (sentence, answer) pair in batch_results
for sentence, answer in sentence_answers:
answer_groups[answer].extend(sentence)
#print(list(answer_groups.items())[0])
# Create a new list with sentences grouped by answer
sentence_answers.extend([(sentence,answer) for answer, sentence in answer_groups.items()])
self.flattened_sentences.extend([x[0] for x in sentence_answers])
self.training_tagged.extend([x[1] for x in sentence_answers])
#print("Data processing complete.")
def process_data_batch(self, batch):
batch_results = []
for data in batch:
text = data["text"]
answer = data["answer"]
preprocessed_sentences = self.preprocess_text(text)
training_tagged = [(sentence, answer) for sentence in preprocessed_sentences]
#print(training_tagged)
batch_results.append(training_tagged)
#create another list where instead, the "sentence" of elements with the same answer are appended with each other
return batch_results
def train_model(self):
# Fit and transform the TF-IDF vectorizer
#print(self.flattened_sentences)
if(self.flattened_sentences):
self.training_tfidf = self.tfidf.fit_transform(self.flattened_sentences)
self.flattened_sentences = []
#self.
#print(self.training_tfidf)
#print(self.training_tagged)
def save(self, file_path):
model_data = {
'training_tagged': list(self.training_tagged),
'tfidf': self.tfidf,
'training_tfidf': self.training_tfidf
}
#print(model_data)
with open(file_path, 'wb') as f:
joblib.dump(model_data, f)
def load(self, file_path):
if os.path.exists(file_path):
with open(file_path, 'rb') as f:
print(os.path.exists(file_path))
model_data = joblib.load(file_path)
self.training_tagged = list(model_data['training_tagged'])
self.tfidf = model_data['tfidf']
print(self.tfidf)
self.training_tfidf = model_data['training_tfidf']
return self
def predict(self, input_data):
# Preprocess input data
new_text_processed = self.preprocess_text(input_data)
new_text_processed_tfidf = self.tfidf.transform(new_text_processed)
training_tfidf = self.training_tfidf
# Calculate sentence similarities
sentence_similarities = cosine_similarity(new_text_processed_tfidf, training_tfidf)
# Initialize data structures
similarities_max = {}
answers = []
# Iterate over sentence similarities
for similarity_row in sentence_similarities:
for answer, similarity in zip(self.training_tagged, similarity_row):
if isinstance(answer, list):
continue
# Update similarities_max only when the new similarity is greater
if answer not in similarities_max or similarity > similarities_max[answer]:
similarities_max[answer] = similarity
if not answers:
answers.extend(similarities_max.keys())
# Calculate total similarity for each answer and find the maximum similarity and its index
total_similarities = np.array([similarities_max[answer] for answer in answers])
closest_index = np.argmax(total_similarities)
closest_answer = answers[closest_index]
return total_similarities[closest_index], closest_answer
#return (sentences.max(),self.training_tagged[closest_index])
def evaluate(self, test_data, labels):
# Evaluate the performance of the model on test data
# Return evaluation metrics
pass
# Additional functions for model tuning, hyperparameter optimization, etc.
if __name__ == "__main__":
# Train a simple model on QB data, save it to a file
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str)
parser.add_argument('--model', type=str)
parser.add_argument('--predict', type=str)
flags = parser.parse_args()
model = NLPModel()
if flags.data:
with open(flags.data, 'r') as data_file:
data_json = json.load(data_file)
model.process_data(data_json)
model.train_model()
print(model.predict("My name is bobby, bobby newport. your name is jeff?"))
model.save("model.pkl")
if flags.model:
model.load(flags.model)
if flags.predict:
print(model.predict(flags.predict))
|