File size: 9,446 Bytes
a3fa0c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import json
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.stem import PorterStemmer, WordNetLemmatizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import os
import math
import pickle
import joblib
import multiprocessing
from concurrent.futures import ProcessPoolExecutor
from tqdm import tqdm  # Import tqdm for progress tracking
from collections import defaultdict


nltk.download('punkt')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
nltk.download('maxent_ne_chunker')
nltk.download('words')
nltk.download('wordnet')
nltk.download('omw-1.4')


# Helper function to map NLTK POS tags to WordNet POS tags
def get_wordnet_pos(treebank_tag):
    if treebank_tag.startswith('J'):
        return nltk.corpus.wordnet.ADJ
    elif treebank_tag.startswith('V'):
        return nltk.corpus.wordnet.VERB
    elif treebank_tag.startswith('N'):
        return nltk.corpus.wordnet.NOUN
    elif treebank_tag.startswith('R'):
        return nltk.corpus.wordnet.ADV
    else:
        return nltk.corpus.wordnet.NOUN

class NLPModel:
    def __init__(self):  # Initialize the model with necessary parameters
        # Initialize model components (preprocessing, training, etc.)
        #self.model

        self.tfidf = TfidfVectorizer(tokenizer=self.tokenize, lowercase=False)
        
        self.training_tfidf = None
        
        #self.manager = multiprocessing.Manager()
        
        self.flattened_sentences = []
        self.training_tagged = []
        self.answers = []
        
        
        
    def tokenize(self, text):
        # Your tokenization logic goes here
        return text  # No tokenization needed, return the input as-is

    def preprocess_text(self, text):
        # Tokenization
        sentences = sent_tokenize(text)
        
        preprocessed_sentences = []
        batch_size = 50  # Adjust the batch size based on your system's capabilities
        for i in range(0, len(sentences), batch_size):
            batch_sentences = sentences[i:i + batch_size]
            batch_words = [word_tokenize(sentence) for sentence in batch_sentences]

            # Filtering Stop Words
            stop_words = set(stopwords.words('english'))
            filtered_words = [[word for word in words if word.lower() not in stop_words] for words in batch_words]

            # Stemming
            stemmer = PorterStemmer()
            stemmed_words = [[stemmer.stem(word) for word in words] for words in filtered_words]

            # Tagging Parts of Speech
            pos_tags = [nltk.pos_tag(words) for words in stemmed_words]

            # Lemmatizing
            lemmatizer = WordNetLemmatizer()
            lemmatized_words = [[lemmatizer.lemmatize(word, pos=get_wordnet_pos(tag)) for word, tag in pos] for pos in pos_tags]

            preprocessed_sentences.extend(lemmatized_words)

        return preprocessed_sentences
    
    def process_data(self, data_json):
        #print("Processing data in parallel...")
        batch_size = 10000  # Experiment with different batch sizes
        num_processes = int(multiprocessing.cpu_count()/2)  # Utilize more processes

        batches = [data_json[i:i + batch_size] for i in range(0, len(data_json), batch_size)]
        
        #print('batches')

        #training_tagged = []  # Initialize or clear self.training_tagged
        sentence_answers = []

        with ProcessPoolExecutor(max_workers=num_processes) as executor:
            results = list(tqdm(executor.map(self.process_data_batch, batches), total=len(batches)))
            
        #with multiprocessing.Pool() as pool:
        #results = []
        #for batch in batches:
        #results.append(self.process_data_batch(batch))

        for batch_result in results:
            for result in batch_result:
                sentence_answers.extend(result)
            #print("here")
            
        # Create a dictionary to group sentences by answer
        answer_groups = defaultdict(list)

        # Iterate through each (sentence, answer) pair in batch_results
        for sentence, answer in sentence_answers:
            answer_groups[answer].extend(sentence)
            
        #print(list(answer_groups.items())[0])

        # Create a new list with sentences grouped by answer
        sentence_answers.extend([(sentence,answer) for answer, sentence in answer_groups.items()])

        self.flattened_sentences.extend([x[0] for x in sentence_answers])
        self.training_tagged.extend([x[1] for x in sentence_answers])
        
        
        
        #print("Data processing complete.")

    def process_data_batch(self, batch):
        batch_results = []
        
        
        
        for data in batch:
            text = data["text"]
            answer = data["answer"]
            preprocessed_sentences = self.preprocess_text(text)
            training_tagged = [(sentence, answer) for sentence in preprocessed_sentences]
            
            
            
            #print(training_tagged)
            batch_results.append(training_tagged)
            
        #create another list where instead, the "sentence" of elements with the same answer are appended with each other
            
        return batch_results

    def train_model(self):
        # Fit and transform the TF-IDF vectorizer
        
        #print(self.flattened_sentences)
        if(self.flattened_sentences):
            self.training_tfidf = self.tfidf.fit_transform(self.flattened_sentences)
            self.flattened_sentences = []
            #self.
            
        #print(self.training_tfidf)
        #print(self.training_tagged)

            


    def save(self, file_path):
        model_data = {
            'training_tagged': list(self.training_tagged),
            'tfidf': self.tfidf,
            'training_tfidf': self.training_tfidf
        }
        #print(model_data)
        with open(file_path, 'wb') as f:
            joblib.dump(model_data, f)

    def load(self, file_path):
        
        if os.path.exists(file_path):
            with open(file_path, 'rb') as f:
                print(os.path.exists(file_path))
                model_data = joblib.load(file_path)
                self.training_tagged = list(model_data['training_tagged'])
                self.tfidf = model_data['tfidf']
                print(self.tfidf)
                self.training_tfidf = model_data['training_tfidf']
            
        return self

    def predict(self, input_data):
        # Preprocess input data
        new_text_processed = self.preprocess_text(input_data)
        new_text_processed_tfidf = self.tfidf.transform(new_text_processed)
        training_tfidf = self.training_tfidf
    
        # Calculate sentence similarities
        sentence_similarities = cosine_similarity(new_text_processed_tfidf, training_tfidf)
    
        # Initialize data structures
        similarities_max = {}
        answers = []
    
        # Iterate over sentence similarities
        for similarity_row in sentence_similarities:
            for answer, similarity in zip(self.training_tagged, similarity_row):
                if isinstance(answer, list):
                    continue
                # Update similarities_max only when the new similarity is greater
                if answer not in similarities_max or similarity > similarities_max[answer]:
                    similarities_max[answer] = similarity
    
            if not answers:
                answers.extend(similarities_max.keys())
    
        # Calculate total similarity for each answer and find the maximum similarity and its index
        total_similarities = np.array([similarities_max[answer] for answer in answers])
        closest_index = np.argmax(total_similarities)
        closest_answer = answers[closest_index]
    
        return total_similarities[closest_index], closest_answer




        
        
                        
    #return (sentences.max(),self.training_tagged[closest_index])



        
    
    def evaluate(self, test_data, labels):
        # Evaluate the performance of the model on test data
        # Return evaluation metrics
        pass
    
    # Additional functions for model tuning, hyperparameter optimization, etc.

if __name__ == "__main__":
    # Train a simple model on QB data, save it to a file
    import argparse
    parser = argparse.ArgumentParser()

    parser.add_argument('--data', type=str)
    parser.add_argument('--model', type=str)
    parser.add_argument('--predict', type=str)

    flags = parser.parse_args()

    model = NLPModel()

    if flags.data:
        with open(flags.data, 'r') as data_file:
            data_json = json.load(data_file)

            model.process_data(data_json)
            model.train_model()
            print(model.predict("My name is bobby, bobby newport. your name is jeff?"))
            model.save("model.pkl")

    if flags.model:
        model.load(flags.model)
    
    if flags.predict:
        print(model.predict(flags.predict))