just-nce / README.md
BWayne's picture
End of training
ce8dfb6
metadata
license: mit
tags:
  - generated_from_trainer
model-index:
  - name: just-nce
    results: []

just-nce

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0338
  • Able: {'precision': 0.4, 'recall': 0.6666666666666666, 'f1': 0.5, 'number': 6}
  • Eading: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
  • Ext: {'precision': 0.75, 'recall': 0.9, 'f1': 0.8181818181818182, 'number': 10}
  • Mage: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
  • Ub heading: {'precision': 0.9090909090909091, 'recall': 0.625, 'f1': 0.7407407407407406, 'number': 16}
  • Overall Precision: 0.6571
  • Overall Recall: 0.575
  • Overall F1: 0.6133
  • Overall Accuracy: 0.68

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss Able Eading Ext Mage Ub heading Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4724 14.29 100 1.0338 {'precision': 0.4, 'recall': 0.6666666666666666, 'f1': 0.5, 'number': 6} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.75, 'recall': 0.9, 'f1': 0.8181818181818182, 'number': 10} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.9090909090909091, 'recall': 0.625, 'f1': 0.7407407407407406, 'number': 16} 0.6571 0.575 0.6133 0.68

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.2